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Abstract: 
 We employ the Merca and Uchimura theorems to obtain an expression for the totality of parts in all partitions of an 

integer. 
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1. Introduction: 

 Merca [1-3] deduced the following expression for an arbitrary arithmetic function f n : 
  f k n

K=1 Sn,k =  g k n
k=1 p n − k ,             

 g m =  f d ,d/m                                         (1) 

Where Sn,k  is the number of k‟s in all partitions of n, and p(m) is the partition function [4].  

For the case f = e, that is, f k = 1, then g m  is the divisor function d(m) [4] and thus (1) gives the totality of parts in all 

partitions of the integer n: 

  Sn,k
n
k=1 =   d(k)n

k=1 p n − k .                                                              (2) 

On the other hand, if Qj(n) is the number of partitions of n into (possibly repeated) parts from among {1, 2, …, j}, its generating 

function is given by [5]: 

  Qj(n)∞
n=0 qn =

1

(q ; q)j
 ,         (3) 

Such that  lim⁡j→∞ Qj n = p n , that is: 

  p(n)∞
n=0 qn =

1

(q ; q)∞
 .                                                                         (4)   

In Sec. 2 we use a theorem of Uchimura [5, 6] to deduce a connection between (2) and the Qj n . 

2. All Partitions of an Integer and Their Totality of Parts: 

 The Uchimura‟s theorem gives the following relation [5, 6]: 

 
1

(q ; q)∞

 d(n)∞
n=0 qn =  

j

(q ; q)j

∞
j=0  qj  ,                                                          (5) 

Where we can apply (3) and (4) to obtain: 

 (

∞

n=0 

 d j 

n

j=0 

p(n − j)) qn =   j

∞

j=0 

 Qj m 

∞

m=0 

qj+m  

=  j

∞

j=0 

 Qj(n − j)

∞

n=j 

qn , 

=   j

n

j=0 

∞

n=0 

Qj n − j qn  , 

Therefore: 

  Sn,k
n
K=1         =   d k n

k=1 p n − k  

   =  kn
k=1 Qk n − k ,                          (6) 

Is an interesting connection between the Qm (n) and the total number of parts in all partitions of an integer. 

Remark: 

 Qk(n) also is the number of partitions of n into at most k parts [7]. 
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