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Abstract:

The increasing sophistication of cyber-attacks necessitates advanced cryptographic frameworks that can evolve
dynamically to respond to evolving attack vectors. Available cryptographic mechanisms, including symmetric and asymmetric
cryptography, homomorphic cryptography, and quantum-resistant cryptography, are premised on predetermined algorithms and
static security parameters. These approaches, however, have limited adaptability, real-time threat detection, and adversarial attack
resilience. Besides, conventional encryption modelsface key management complexity, computational expense, and vulnerability to
machine learning-based cryptanalysis. In addressing the issues, this study proposes a Cognitive and Adaptive Cryptographic
(CAC) system founded on Deep Learning (DL) techniques for intelligent cipher systems. The proposed model integrates
Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) networks for adaptive key generation, Generative
Adversarial Networks (GANS) for attack detection and cryptanalysis, and Reinforcement Learning (RL) for policy optimization in
terms of real-time threat appraisal. This adaptive approach enhances security by independently tuning encryption parameters
according to detected anomalies, substantially reducing the risk of cryptographic attacks. The process entails dataset collection
from encrypted communication records and simulated attacks, real-time anomaly detection model training, and performance
analysis using key entropy, encryption rate, and computational efficiency as metrics. Experiment results indicate that the proposed
CAC framework is more robust to adversarial attacks with 97.2% accuracy, computationally efficient, and encryptable compared
to the conventional cryptographic techniques.

Key Words: Cognitive Cryptography, Adaptive Encryption, Deep Learning In Security, Gans For Cryptanalysis, Reinforcement
Learning In Cryptography.
1. Introduction:

With the ever-evolving nature of cybersecurity in the present era, traditional cryptographic techniques remain under
constant experimentation with sophisticated cyber-attacks, adversary attacks, and the onset of quantum computing(Hamarsheh,
2024). Classical encryption schemes such as symmetric (AES, DES) and asymmetric (RSA, ECC) cryptographic schemes are
developed upon pre-defined algorithms and static security parameters that are unable to effectively react to real-time security
attacks (Segal & Hod, 2024). In addition, management of cryptographic keys, computational overhead, and vulnerability to
advanced cryptanalysis techniques, such as deep learning attacks, are of prime concern for existing security models(Londemure et
al., 2024). These disadvantages highlight the importance of intelligent, self-tuning, and dynamically evolving cryptographic
mechanisms that can defend against emerging threats in realtime (Akshaya et al., 2023).

CAC employs Artificial Intelligence (Al) and DL models to enhance encryption mechanisms to become more intelligent,
resilient, and adaptable(Solomon et al., 2024). Unlike traditional cryptographic schemes that employ rigid algorithms, CAC
enables encryption systems to alter key parameters autonomously, fine-tune encryption techniques, and detect abnormal patterns
through continuous learning (Sun et al., 2021). Using Neural Networks, GANs, and RL, cryptographic mechanisms can modify
encryption protocols in real-time, according to the contextual evaluation of cyber-attacks(Deepanramkumar & Helensharmila,
2024). This results in an adaptable system in real-time, better adversarial attack resilience, and increased computational resource
usage efficiency (Blessing et al., 2024).

The proposed study presents a deep learning-powered CAC system with RNNs and LSTM networks for adaptive key
generation, GANSs to detect attacks and cryptanalysis them, and RL to optimize adaptive encryption policy. The methodology
involves training Al models on encrypted data and simulated attacks to develop a smart cryptosystem capable of self-learning and
adjusting. Experimental results demonstrate that this approach enhances security by enhancing encryption strength, reducing
computational overhead, and significantly enhancing resistance to adversarial attacks compared to conventional crypto
approaches.

As the world increasingly relies on cloud computing, edge computing, and loT applications, the demand for intelligent
and adaptive encryption methods is greater than ever. This research introduces Al-based, cognitive-based cryptographic systems
that provide guantum-resistant, self-adaptive, and scalable security solutions for future-proof cybersecurity infrastructures to
bridge the gap between deep learning and cryptography.

1.1 Research Motivation:

With the increased reliance on cloud computing, edge computing, and loT applications, adaptive and smart encryption
methods are in greater demand than ever. (Shohrab, 2023). This study attempts to fill the void between deep learning and
cryptography by developing Al-based, cognitive cryptographic systems that provide quantum-resistant, self-adaptive, and scalable
security platforms for future-proof cybersecurity infrastructures (Kapor & Molloholli, 2024). By integrating DL, GANSs, and RL,
cryptography can be transformed into a smart and adaptive mechanism that can recognize threats in realtime and tailor encryption
for optimality. This study aims to bridge Al and cryptography so scalable, secure, and quantum-safe security solutions may be
attained for modern digital landscapes.
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1.2 Key Contributions:
e Al-Adaptive Cryptography- Introduces a CAC model that dynamically employs DL to alter the encryption based on real-
time threat analysis.
e Deep Learning for Key Management- Leverages RNNs and LSTM for smart key generation and management, mitigating
conventional cryptographic key management vulnerabilities.
e GAN-Based Cryptanalysis & Attack Detection- Utilizes GANs to mimic and identify cryptographic attacks to improve
system strength against adversarial attacks.
e Reinforcement Learning for Adaptive Encryption- Utilizes RL to learn to optimize encryption methods independently,
providing real-time adaptability to changing cyber threats.
e Enhanced Security & Performance Measures- Exhibits greater immunity to cryptanalysis, better computational
performance, and greater flexibility over conventional cryptographic methods.
1.3 Organization of the Paper:

This paper is organized as follows: Section 1 (Introduction) introduces the background, importance, and limitations of
conventional cryptography, highlighting the necessity for adaptive and Al-based encryption methods. Section 2 (Related Works)
discusses current cryptographic approaches, deep learning in cybersecurity, and the research gaps. Section 3 Methodology
explains the proposed CAC framework, including deep learning models like RNNs, GANs, and Reinforcement Learning for
adaptive encryption. Section 4 (Results and Discussion) analyses the model’s security, efficiency, and adversarial robustness
performance. Lastly, Section 5 (Conclusion) presents the main findings and recommends future research directions.

2. Related Works:

Atif & Hussain(2025) explain thatthe convergence of human-robot collaboration (HRC), deep learning, and cryptography
will power the next wave of smart systems, revolutionizing manufacturing, healthcare, and defense. HRC allows for smooth
collaboration between humans and robots, enhancing efficiency, safety, and accuracy. When merged with deep learning, robots
can learn from experience, adjust to changing environments, and make better decisions with time. Nonetheless, the large-scale use
of intelligent systems in key areas calls for improved security. Cryptography provides basic protection, guaranteeing data privacy,
integrity, and secure communication within these collaborative systems. This article discusses the convergence of HRC, deep
learning, and cryptography and their combined potential to develop intelligent systems that are adaptive and efficient yet secure
and reliable. Then, discuss major applications, challenges, and future directions, emphasizing the requirement for resilience to
cyber-attacks, ethical human-robot interaction, and the changing needs of next-generation industries.

Al-Kateb et al.(2024) explain that as cyber threats constantly change, conventional cryptographic methods find it difficult
to keep up with more advanced and adaptive attack methods. Traditional security mechanisms are based on static algorithms and
fixed key formats, which makes them less effective against contemporary cyber threats. To overcome these limitations, this study
proposes CryptoGenSec, a sophisticated generative Al-driven algorithm that combines GANs with RL to strengthen cryptographic
protection. CryptoGenSec uses GANs to mimic various cyberattack scenarios, allowing the system to detect potential
vulnerabilities ahead of time. RL subsequently fine-tunes the algorithm’s defensive tactics through ongoing learning from such
simulations, facilitating real-time evolution and adaptation of security measures. Comparative performance testing of
CryptoGenSec against conventional security methods points to its superior performance. Salient findings include a 20% boost in
response time, a 30% decrease in attack suppression time, and a 25% enhancement in resilience against dynamic threats.

Additionally, CryptoGenSec indicates a 50% reduction in false positives while significantly improving detection and
response for emerging cyber-attacks, such as zero-day attacks, where the rate of detection increases by 40%. Its protection
effectiveness for data is additionally 95%, which more comprehensively beats conventional processes that only manage 70%.
Through integrating GANs and RL, CryptoGenSec is a significant step ahead of traditional static defenses to an evolving security
paradigm that everadapts to emergent threats. The research points to its potential as a game-changing technology in enhancing
cyber resilience, reducing attack effects, and boosting the overall robustness of cryptographic defense mechanisms.

Malware growth on Android mobile devices has escalated, and Android ransomware has developed into a critical threat
to users’ privacy and confidential information. This study deals with the expanding spread of Android ransomware within the
mobile environment. Research reveals an incremental growth in fresh ransomware each year, threatening mobile security
significantly. Though different detection methods are available, most have poor accuracy, below optimum detection levels, and
insecure data storage. Kalpana et al.(2024) suggest combining deep learning-based detection algorithms with secure cloud storage
through hybrid cryptography to overcome them and improve security. APK files and data are pre-processed to identify critical
features and optimized through the Squirrel Search Optimization (SSO) algorithm. The filtered features are examined through an
adaptive deep saliency model with the AlexNet classifier, which correctly classifies data into malicious or benign. Benign data is
securely stored on a cloud server. A hybrid encryption model based on homomorphic Elliptic Curve Cryptography (ECC) and
Blowfish is utilized for better cloud storage security. The model maintains secure computation of keys, encryption, and
decryption, enabling valid users to access decrypted data efficiently. Performance tests illustrate the efficiency of the suggested
system, where it detected malware with 99.89% accuracy, better than the conventional models, i.e., GNN, CNN, and Random
Forest. The findings confirm the suggested framework as a very accurate and safe solution for preventing Android ransomware
attacks.

Mangaiyarkarasi & Malathi (2024) explain that the advent of computing networks for supporting multimedia applications
demanding Quality of Service (QoS) requirements has resulted in the simultaneous presence of wired and wireless networks. The
networks have different QoS properties and different degrees of heterogeneity in terms of bandwidth, delay, and jitter.
Uncontrolled bandwidth networks tend to experience congestion, and this reduces overall performance. This research analyses the
performance of various security algorithms (authentication and encryption) under various packet sizes and determines their effects
on ESP and QoS performance. The main goal is to present a holistic view of designing QoS-enabled networks’ needs and benefits.
In order to promote network scalability and security, machine learning-based routing protocols are coupled with an authentication
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system in this research. A hybrid GAN and a cognitive routing protocol are used for QoS enhancements. Security is also enhanced

using an authenticated cryptographic intrusion detection system. Experimental findings prove network scalability and security

enhancements, tested using important performance metrics like accuracy, precision, end-to-end delay, scalability, and network

throughput. The results show the merits of the suggested technique in maximizing network performance without compromising on
strong security protocols.

Rajaram et al.(2024)Within the fast-paced area of biometric payment systems, advanced encryption methodologies must
be considered for strong security and privacy. In this paper, cutting-edge encryption techniques that have been developed uniquely
to protect biometric information against big data and Al application risks are examined in depth. The research delves into how
such encryption methods respond to the specific challenges of processing and protecting large amounts of sensitive biometric data
within contemporary payment environments. Important encryption methods discussed are homomorphic encryption, secure multi-
party computation, and gquantum-resistant algorithms, emphasizing their capability to protect against new cyber-attacks.
Furthermore, the paper emphasizes how Al-based encryption upgrades play their part, using examples of machine learning
algorithms as they actively learn to detect vulnerabilities and neutralize them to beef up security. Through empirical case studies
and existing data, the study offers much-needed insights regarding the practical feasibility of such mechanisms and their
significance in the safety scenario of biometric payments. The work helps to shed new light on how strong encryption and Al can
work together to support biometric payment systems to make financial transactions more secure, efficient, and privacy-friendly.

Although current research has achieved tremendous progress in cybersecurity, biometric security, and network
optimization, some limitations exist. In HRC, combined with deep learning and cryptography, there are challenges in maintaining
real-time adaptability, ethical concerns, and resilience against changing cyber threats. Generative Al-based cryptographic models,
like the blending of GANs and reinforcement learning, exhibit enhanced robustness but are also plagued by the high
computational overhead, the risk of overfitting certain attack patterns, and narrow generalizability to new cyber threats. DL
models in Android ransomware detection exhibit high accuracy but are challenged by false positives, high resource usage, and
scalability challenges in real mobile environments. Network security methods using machine learning and cryptographic intrusion
detection and QoS capabilities do not have effective congestion control, dynamic adjustment, and security-performance optimal
trade-off. Even though homomorphic encryption and quantum-resistant cryptography techniques have progressed, high latency,
computational intensity, and compatibility issues in smooth integration with big-scale financial infrastructure pose problems in
biometric payment systems. In all these fields, the principal limitations include computational expense, power inefficiency, and
the necessity for real-time adaptability in response to changing threats, necessitating more lightweight, scalable, and dynamically
changing security models.

3. Cognitive and Adaptive Cryptographic Framework (CACF) Using Deep Learning:

The suggested CACF utilizes DL to improve encryption flexibility and adversarial attack resilience. The process starts
with data gathering and pre-processing, in which encrypted communication records and cyberattack trends are collected and pre-
processed for model training. RNNs and LSTM models are utilized for dynamic key generation and management, providing real -
time encryption adaptation. GANSs are utilized for cryptanalysis and attack detection, mimicking adversarial attacks to enhance
encryption resilience. Further, RL learns encryption policies optimally from real-time threat assessment. The trained model is
validated and benchmarked using security resilience, computational speed, and key entropy parameters. The framework is
implemented and optimized for cloud computing, 10T security, and post-quantum cryptography, and it outperforms conventional
static cryptographic approaches. The block diagram of the overall methodology is given in figure 1.
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Figure 1: Overall Methodology Block
3.1 Data Collection:

To create a dataset for CAC through Deep Learning, develop a dataset with encryption/decryption logs, cryptographic
key management logs, and crypto-jacking attack traces. The dataset contains three CSV files: Anomalous Dataset), recording
system performance logs during cryptojacking attacks; Normal Dataset, reflecting normal encryption/decryption activities without
cryptojacking disruption; and Complete Dataset, combining both normal and anomalous data with attack existence labels. Key
attributes are CPU usage, memory usage, network traffic, disk 1/O rate, encryption delay, key entropy, anomaly score, and attack

45



International Journal of Advanced Trends in Engineering and Technology (IJATET)
International Peer Reviewed - Refereed Research Journal, Website: www.dvpublication.com
Impact Factor: 5.965, ISSN (Online): 2456 - 4664, Volume 10, Issue 1, January - June, 2025
labels (0 for benign, 1 for crypto-jacking attack). The dataset facilitates Deep Learning-based adaptive cryptographic models to
identify and react to threats in real-time(Jayasinghe, 2020).
3.2 Data Pre-Processing:
Developing a DL model for Cognitive and Adaptive Cryptography requires pre-processing steps for the dataset through
feature engineering, normalization, and augmentation procedures.
3.2.1 Feature Engineering:
Feature engineering enhances data sets through purpose-driven data processing, leading to better model performance.
e Feature Selection:
The features acquired for use in cryptojacking detection and adaptive cryptographic key management do not provide
equivalent levels of benefit to the system. Selecting relevant features uses mutual information (MI) as the evaluation method in

eqn. (1):

P(x,
1Y) = Tyex Zyev P(x,y)log 5o 1)

where P(x,y) is the joint probability distribution of X and Y, P(x) and P(y) are the marginal probabilities of X and Y,
respectively, and I(X;Y) is the mutual information between features X and Y. Low mutual information features are eliminated.
e Feature Extraction:
The system generates a new feature that shows CPU utilization patterns through mean calculations across moving
windows in egn. (2):
CPUsrena, = 1 St CPU_usage; )
where n is the window size (e.g., last 5 time steps).
¢ Handling Missing Data:
The mean value serves as a replacement for missing values present in the features in eqgn. (3):

X =1y X, ®)

missing N &i=1

Where, Xpyissing 1S the imputed value, and N is the total number of observed values for feature X.
3.2.2 Data Normalization:

Min-Max Scaling must be applied to feature scaling while also improving the stability of the DL model in egn. (4):

, X=X min

X = Xmax —Xmin (4)

where: X' is the normalized value, X is the original value, X, and X,., are the minimum and maximum values of
feature X. The transformation assigns numerical values between 0 and 1 to all features, preventing dominant behavior from any
individual feature because of its scale magnitude.
3.2.3 Data Augmentation:

Synthetic samples through augmentation act as an approach to enhance model generalization capabilities. Gaussian Noise
Injection serves as a tool for transforming continuous features such as encryption latency and CPU usage in eqn. (5):

Xag =X+ N (0, 0?) (5)

where V' (0, 62) represents Gaussian noise with mean 0 and standard deviation o.

The attack label data can be reshaped using the Synthetic Minority Oversampling Technique (SMOTE), which produces
new synthetic data points through feature interpolation in eqn. (6):

Xnew = Xminori'ty + A(Xnearest - Xminority ) (6)

where A is a random number between 0 and 1.

3.3 Hybrid DL Framework for Cognitive and Adaptive Cryptography:

To develop an intelligent cipher adaptation framework, propose a hybrid DL framework that integrates Recurrent
RNNs/LSTM, GANs, and RL to enhance cryptographic security. Each module of the framework has a specific role: key
generation and adaptive encryption (LSTM), attack simulation and detection (GANSs), and adaptive encryption strategy
optimization (RL).

3.3.1 RNN/LSTM for Key Generation and Dynamic Encryption:

Traditional key generation mechanisms suffer from predictability and ineffectiveness concerning shifting threats.
Dynamically generated keys, using LSTMs, an RNN structure, are drawn upon to identify prior patterns so that high-entropy,
random keys are outputted. The LSTM cell equations are in eqn. (7)-(12):

fo = o(Wr. [he_q, x] + by) ()
ie = oW [h,_,x] + b) ©
C; = tanh(W,. [ht_1~, x¢] + be) 9)
C,=f xCq +1i *C; (10)
o = 0(Wo. [he—1, %] +bo) (11)
h, = o, * tanhi{C,) (12)

Where: f,, i, o.are the forget, input, and output gates,C, represents the cell states, h, is the hidden states, W and b are the
weight matrices and biases, respectively.
The LSTM model keeps on learning encryption trends, key randomness optimization, and key parameter modification
according to the system’s security requirements.
3.3.2 GANs for Cryptanalysis and Attack Simulation:
GANs are used to mimic cryptographic attacks and enhance resilience. A GAN is made up of two rival networks:
e  Generator G(z)- Creates adversarial attack scenarios.
e Discriminator D(x)- Differentiates between genuine and spurious attack patterns.
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The GAN aims to reduce the discrepancy between the real and created attack situations, employing the loss function in
eqgn. (13):

ming maxp V(D,G) = Eyx.p,,. [l0gD(X)] + E,p,()[log (1 — D(G(z)))] (13)

Where X is actual attack data, z is noisy input, G(z) creates synthetic attack scenarios, and D(x) discriminates whether an
attack is real or synthetic. The trained discriminator identifies real-time cryptographic threats, whereas the generator facilitates
hardening encryption robustness by exposing vulnerabilities.

3.3.3 RL for Adaptive Encryption Strategy Optimization:
To make sure encryption dynamically scales up to threats, RL is used to maximize encryption policies. The RL model
includes:
e  Agent (Cryptographic System) - Identifies the optimum encryption techniques.
e Environment (Threat Landscape) - Envelops emerging attack scenarios.
e Actions (Encryption Policy Changes) - Modifies key length, algorithm type, and security level.
e Rewards (Security & Performance Metrics) - Optimizes encryption strength while reducing computational expense.
The RL agent learns its policy with Q-learning in eqgn. (14):
Q(s,a) = Q(s,) + a[r + ymax, Q(s,a) — Q(s,a)] (14)

Where: Q(s, a) is the Q-value for state s and action a, o is learning rate, r is reward for action a, y is discount factor, s’ is
new state after action a. The RL model repeatedly learns the best encryption approach by responding in real-time to system
performance and security threats.

3.3.4 Hybrid DL Model for Intelligent Cipher Adaptation:

Integrating LSTM-based key generation, GAN-facilitated attack simulation, and RL-guided encryption, strategy
optimization creates a self-adaptive, learning cryptographic framework. The ultimate encryption choice is determined through
real-time system analysis, anomaly detection, and predictive security insights. The combination of these models leads to:

e Strongly unpredictable key generation, minimizing predictability in encryption.
e Improved attack detection through adversarial learning.
e Dynamic encryption policies that adapt to new threats.

This deep learning-based cryptographic hybrid model provides a self-adaptive, intelligent, and quantum-proof security
system for future-proof cybersecurity infrastructures.
4. Results and Discussion:

DL-based Cryptographic Hybrid Model is superior to conventional cryptography as it offers greater flexibility in
encryption, better defense against attacks, and increased calculation speed. Experimentally derived results prove that LSTM-based
key generation generates keys with greater entropy while at the same time reducing predictability and enhancing randomness. The
GAN-based cryptanalysis system accurately identifies cryptographic weaknesses by providing accuracy that improves security
enhancements at an earlier stage. The real-time adaptive encryption guidelines of the RL-based strategy impose encryption
accelerations without compromising security levels. The hybrid approach is highly resistant to adversarial attacks since it
identifies threats with a false positive rate. The self-learning and quantum-resistant encryption structure successfully enhance
security infrastructure, thus becoming a workable solution for digital communication systems and 10T alongside cloud computing
security.

4.1 Performance Evaluation:

A performance assessment of the proposed DL-based Cryptographic Hybrid Model needs to be conducted through
security and efficiency measurement of encryption speed, key entropy evaluation, computational efficiency metrics, and attack
detection accuracy testing. The proposed model uses encryption speed tests alongside RSA (Rivest-Shamir-Adleman), AES
(Advanced Encryption Standard), and ECC (Elliptic Curve Cryptography) traditional cryptography methods to compare
adaptability strength and performance enhancement.

4.1.1 Encryption Speed:

The measure of encryption speed determines the data encryption process through which security goals remain intact. It is

defined as eqn. (15):

Senc = — (15)

Where: S.,. is the encryption speed (MB/s), Dg,. is the size of the data block (MB), T.,. is the encryption time
(seconds).
4.1.2 Key Entropy (Randomness & Security Level):

The quality of random key generation through Key entropy enables cryptographic protections against brute-force
decrypting methods. It is calculated using Shannon’s Entropy Formula in egn. (16):

H(K) = ¥i_; P(k;) log, P(k;) (16)

where: H(K) is the entropy of the key K, P(k;) is the probability of occurrence of each key bit k;, n is the total number of
bits in the key.
4.1.3 Computational Efficiency (Encryption Overhead & Energy Consumption):

Performance evaluation of computational efficiency happens through analysis of encryption overhead and cryptographic
operation energy consumption. The encryption overhead is given by egn. (17):

Oppe = —ene TThase 5 1009 (17)

Thase
Where: O, is the encryption overhead (%), T.,. is the encryption time of the model, T, is the encryption time of a

baseline cryptographic method (AES).
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4.1.4 Attack Detection Accuracy:
The model’s capacity for identifying crypto-jacking and adversarial and side-channel attacks will be assessed using
accuracy, precision, recall, and F1-Score metrics in egn. (18)-(21):

_ tp+tn
Accuracy-—tp+UPHp+m (18)
A _
Precision = —rs (19)
__
Recall = e (20)

F1 — Score = 2 X Precision xRecall (21)

Precision +Recall

Where: tp (True Positives), tn (True Negative)fp (False Positives), fn (False Negatives).
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Figure 2: Encryption Speed Comparison across Cryptographic Methods
Figure 2 shows the encryption speed (in MB/s) of four cryptographic algorithms: AES-256, RSA-2048, ECC, and the
Proposed Model. The output shows that AES-256 clocks 150 MB/s, RSA-2048, and ECC register 50 MB/s and 80 MBI/s,
respectively. The Proposed Model beats all other methods with 190 MB/s, proving it effective in secure encryption with high
computation speed.

Key Entropy (Higher is Better)

8.000 +

7.995 4

7.990 ~

7.985 A

7.980 A

7.975 4

Entropy Value

7.970 4

7.965 A

7.960 A

AES-256 RSA-2048 ECC Proposed Model
Cryptographic Methods
Figure 3. Key Entropy Comparison across Cryptographic Methods
Figure 3 illustrates the primary entropy of various cryptographic techniques, with higher entropy representing better
security. AES-256 and ECC have about 7.98 and 7.97 entropy levels, while RSA-2048 has a marginally lower entropy of 7.96.
The Proposed Model has a maximum entropy of 8.00, proving to be more random and resistant to cryptanalysis, hence more
secure for encryption purposes.
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Figure 4: Encryption Overhead Comparison across Cryptographic Methods
Figure 4 plots the encryption overhead (%) of various cryptographic algorithms with smaller values, suggesting better
efficiency. AES-256 does not show any overhead, whereas RSA-2048 and ECC show bigger overheads of 35% and 20%,
respectively, as they require more complex computations. The Proposed Model records a 22% negative overhead, clearly

reflecting its better-optimized process of encryption, lesser computational expenses, and superior efficiency compared to
conventional cryptographic methodologies.
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Figure 5: Attack Detection Performance across Cryptographic Methods

Figure 5 shows the performance of various cryptographic techniques in attack detection, tested based on Accuracy,
Precision, Recall, and F1-Score. AES-256, RSA-2048, and ECC have moderate detection rates between 83% and 86.5%. The
Proposed Model performs better than all, with an accuracy rate of 97.2% and an F1-score of 96.4%, having better precision, recall,
and resilience in detecting cryptographic attacks.

5. Conclusion and Future Works:

The ADLCEF is much better than existing cryptographic approaches like AES-256, RSA-2048, and ECC regarding
encryption adaptability, computational performance, and attack resistance. The model has improved key entropy (8.00 bits) using
LSTM-based key generation, which provides strong security. The GAN-driven cryptanalysis has improved adversarial attack
detection with a 97.2% accuracy, which is better than traditional approaches. In addition, RL-based encryption strategy
optimization also lowers computational overhead by 22%, showing a balance between security and efficiency. These findings
affirm that Al-based cryptography can offer real-time, adaptive, and quantum-resistant encryption solutions, which is a good
option for next-generation cybersecurity infrastructures.

Self-improving encryption protocols through Al should be investigated in future studies, where Al keeps improving
encryption mechanisms in line with changing threats. Moreover, incorporating privacy-preserving federated cryptography can add
security to decentralized systems while limiting data exposure. More development of Al-augmented post-quantum cryptographic
security is necessary to protect against quantum computing threats. Extending the framework’s scalability to constrained 10T
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settings and real-time cloud security systems will further entrench its influence. Lastly, improving adversarial robustness using
explainable Al (XAI) methods can enhance model interpretability and trustworthiness, allowing for the ubiquitous deployment of
intelligent, adaptive cryptosystems.

References:

1.

2.

10.

11.

12.

13.

14,
15.

16.

Atif, U., & Hussain, K. (2025). Combining Human-Robot Collaboration, Deep Learning, and Cryptography for Future-
Ready Intelligent Systems.

Al-Kateb, G. E., Khaleel, I., & Aljanabi, M. (2024). CryptoGenSEC: a hybrid generative Al algorithm for dynamic
cryptographic cyber defence. Deleted Journal, 4(3), 150-163. https://doi.org/10.58496/mjcs/2024/013

Blessing, A. I., Wendy, C., & Zion, J. (2024). Adaptive Decoding Strategies.

Deepanramkumar, P., & Sharmila, A. H. (2024). Al-Enhanced Quantum-Secured lIoT Communication Framework for 6G
Cognitive radio networks. IEEE Access, 12, 144698-144709. https://doi.org/10.1109/access.2024.3471711

Hamarsheh, A. (2024). An adaptive security framework for internet of things networks leveraging SDN and machine
learning. Applied Sciences, 14(11), 4530. https://doi.org/10.3390/app14114530

Jayasinghe, K. (2020). Cryptojacking Attack Timeseries Dataset. https://doi.org/2020

Kalphana, K. R., Aanjankumar, S., Surya, M., Ramadevi, M. S., Ramela, K. R., Anitha, T., Nagaprasad, N., &
Krishnaraj, R. (2024). Prediction of android ransomware with deep learning model using hybrid cryptography. Scientific
Reports, 14(1). https://doi.org/10.1038/s41598-024-70544-x

Kapor, A., & Molloholli, M. (2024). Machine Learning Models for Cyber Security: Addressing Quantum Computing
Threats.

Londemure, D., Eversleigh, F., Merriweather, A., Thorncroft, I., & Harrington, W. (2024). Automated ransomware
detection using hierarchical encryption deviation analysis.

Mangaiyarkarasi, V., & Malathi, S. (2024). Design of Operative Network in Enhancing Quality of Service and Security
Using Hybrid General Adversarial Network with Cognitive Routing Protocol and Authenticated Cryptographic Intrusion
Detection System.

M, S. S. H., Akshaya, V., Mandala, V., Anilkumar, C., VishnuRaja, P., & Aarthi, R. (2023). Security enhancement and
attack detection using optimized hybrid deep learning and improved encryption algorithm over Internet of Things.
Measurement Sensors, 30, 100917. https://doi.org/10.1016/j.measen.2023.100917

Rajaram, S. K., Patra, G. K., Gollangi, H. K., & Boddapati, V. N. (2025). Advanced Encryption techniques in Biometric
Payment Systems: A big data and Al perspective. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.5156467

Segal, Y., & Hod, A. (2024). Dynamic Access Decision Scoring: An Adaptive Framework for Healthcare Data Security
and Privacy.

Shohrab, S. (2023). Dynamic data encryption with polarized feedback [PhD Thesis]. Dublin Business School.

Solomon, A., Walker, E., Kensington, J., Drummond, M., Hall, R., & Blackwell, G. (2024). A new autonomous multi-
layered cognitive detection mechanism for ransomware attacks.

Sun, Y., Yu, K., Bashir, A. K., & Liao, X. (2021). BL-IEA: A Bit-Level image encryption algorithm for cognitive
services in intelligent transportation systems. IEEE Transactions on Intelligent Transportation Systems, 24(1), 1062-
1074. https://doi.org/10.1109/tits.2021.3129598

50



