
International Journal of Advanced Trends in Engineering and Technology (IJATET)

Impact Factor: 5.665, ISSN (Online): 2456 - 4664

(www.dvpublication.com) Volume I, Issue I, 2016

30

DIRECTORY BASED CACHE COHERENCY, ORGANIZATION,

OPERATIONS AND CHALLENGES IN IMPLEMENTATION -

STUDY

Subrahmanya Bhat* & Dr. K. R Kamath**
* Department Computer Application, Srinivas Institute of Management Studies,

Mangalore, Karnataka & Research Scholar, Rayalseema University, Andhra Pradesh

** Professor, Department of Computer Science, Srinivas Institute of Technology,

Mangalore, Karnataka

Cite This Article: Subrahmanya Bhat & Dr. K. R Kamath, “Directory Based Cache Coherency, Organization,

Operations and Challenges in Implementation - Study”, International Journal of Advanced Trends in

Engineering and Technology, Page Number 30-33, Volume 1, Issue 1, 2016

Abstract:

Todays systems are designed with Multi Core Architecture. The idea behind this is to achieve high

system throuput. Once the Processor clock speed reached its saturation, designers opted for having multiple

cores. Each Core or Processor equipped with their own private cache memory. But under Chip Multiprocessor,

where all the processor have access to shared memory, having respective cache memory will result with Cache

Coherency Problem. In Directory Protocol, for each block of data there is a directory entry that contains a

number of pointers. The purpose of this number is to mention the locations of block copies. The important

advantage of directory based protocols is that they scale much better than snoopy protocols. In addition to this it

has the advantage of ability to exploit arbitrary point-to-point interconnects. But mean time it also has the

overhead in terms of the storage and manipulation of directory state. This paper discus different Directory Based

implementation, operations along with and its implementation difficulties.

1. Introduction:
Todays systems are designed with Multi Core Architecture. The idea behind this is to achieve high

system throughput. Once the Processor clock speed reached its saturation, designers opted for having multiple

cores. Each Core or Processor equipped with their own private cache memory. A typical shared memory

multiprocessor contains multiple levels of caches in the memory hierarchy. Each processor may read data and

store it in its cache. This results in copies of the same data being present in different caches at the same time. In

order to maintain the consistency, Cache Coherence Protocols have been imposed on such systems. Cache

coherence protocols are classified based on the technique by which they implement as Snooping and Directory

based protocols. In Directory based protocols, a main directory is maintained containing information on shared

data across processor caches. The directory works as a look-up table for each processor to identify coherence

and consistency of data which is currently being updated. A directory-based protocol is a smart way of

implementing cache consistency on an arbitrary interconnection network.

2. Directory Organization:

Choosing the structure of the directory should be one of the criteria in order to get good system

performance while implementing the cache coherency. Directory organization defines the storage structures that

make up the directory and the different information stored in directory. While implementing the directory

scheme one needs to concentrate on minimising the storage requirement for such directories. There are two

major approaches in Directory Structure, like Limited Pointers Allocation Dynamic Pointer Allocation

Directories and Sparse Directory Schemes [1]. These organizations provide good performance even though

incurring some memory overheads in terms of pointer locations. At first we will analyse the characteristics of

these two strategies, and compare them in terms of memory requirement and operations needed while

implementing cache coherence.

In a traditional directory structure called Censier/Feautrier organization, the directory maintains a

vector of valid bits, one bit per processor, for each data block at main memory. With this structure, the resulting

memory overhead is exponentially increases with number of processors and hence does not support for the

systems with very large number of CPUs. Furthermore, even if the memory overhead was reasonable in a large-

scale machine, the large size of the valid bit vector will result with difficulties in implementation. So when such

traditional directory organizations incur excessive memory overhead, other alternative methods needs to be

explored. A general approach in this regard for reducing memory overhead is by either reducing the directory’s

length or the directory’s width.

3. Implementation of Limited Pointers Directories:
In small-scale multiprocessors usually a few caches contain a given block of data whenever a write

occurs. In such case, on a write operation, the data is invalidated in all except the one cache where write has

been done. The valid bit vector in traditional directories has only a few of its bits set. It is therefore more

efficient to replace the vector with several pointers, which are log n bit fields that encode the unique identities of

those caches containing the data block. This overhead is calculated by dividing the number of bits in a directory

entry by the number of data bits represented by that entry. Here the memory overhead is directly proportional to

International Journal of Advanced Trends in Engineering and Technology (IJATET)

Impact Factor: 5.665, ISSN (Online): 2456 - 4664

(www.dvpublication.com) Volume I, Issue I, 2016

31

the number of processors and the number of pointers in a directory entry, and inversely proportional to the

number of bytes in a cache block. With this approach it has been found that it is possible to have the directory

entry with at least three pointers for most large-scale systems, and keeping the memory overhead much lesser

than traditional directory schemes [7]. With only a small number of pointers in each entry, it may happen that

the directory entry run short for a given memory block. This occurs when a request due to a read miss arrives at

memory and the directory finds no free pointers remaining in that entry to record this state. To handle this there

are two basic strategies like broadcast scheme and no-broadcast scheme. In a broadcast scheme, a broadcast bit

in the directory entry is set, indicating that the directory is no longer keeping track of the caches containing that

data. When a processor eventually writes the data, the directory must resort to broadcasting an invalidation

request to all caches. No-broadcast scheme insists that not more than k cached copies of a block of data may

exist at any given time. Here k is the number of pointers in each directory entry. When a free pointer is needed

and if it is not available, a pointer is randomly selected and freed by invalidating the data from that cache the

pointer identifies. It has been found that limited pointers directories incur reasonable storage overhead, and its

implementation is straightforward [7]. How-ever, in these systems performance may not be optimal especially in

large-scale machines.

4. Dynamic Pointer Allocation Directories:
Another directory organization proposed is the dynamic pointer allocation method. This method takes

advantage of the fact that most data blocks are shared at any given time by only a few caches, while a few

blocks may be widely shared. Similar to the limited pointers directories, this directory scheme uses pointers that

contain the unique identities of those caches containing the data. However, the number of pointers available in

an entry is not fixed, and it is rather allocated on-the-fly from a pool of available pointers. When a pointer is no

longer needed, it is returned to the pool.

5. Implementation of Dynamic Pointer Allocation Directory:
Here the directory is containing a number of pointers, each paired with a link to form basic data

structure - linked list of cache pointers. In addition, each block of main memory has an associated dirty bit, a

link to a list of pointers allocated to the block, and an empty bit that indicates whether or not the block’s list of

pointers is empty. When the list is not empty, the last pointer links back to the main memory block, forming a

circular list. At system start-up, a single linked list consisting of all the pointers is built. A special register known

as the free list link is set to contain the address of the first pointer/link pair; this register is a link to the head of

the free fist. On a cache miss, a pointer is removed from the free list and added to the head of the list for the

desired memory block. When permission to write a block is requested by a cache, the directory steps through the

block’s pointer list, sending invalidations to each cache on the list and returning the pointers to the head of the

free list. The end of the list is reached when the end-of-list bit associated with each pointer/link pair is found to

be set. The dynamic pointer allocation directory adds less storage to each data block than a standard limited

pointers directory with several pointers per entry. With this method of directory, memory overhead to be

considered is in terms of the dirty bits, empty bits, and head links. Since caches are growing larger with each

new generation of systems, the length of the pointer/link store must also grow accordingly. Therefore, the

directory overhead will rise over time, due to increases in the width of the pointer list head link field. It has been

found that with this scheme, even a increase in the size of the pointer/link store by a factor of 10 or higher

results with only a modest overhead increase for a given cache line size[7]. The dynamic pointer allocation

scheme therefore has resulted with good storage efficiency even in the presence of large caches. The pointer/link

store would scale gracefully over the time. The number of pointers required on a node depends on the cache

size. The number of pointers that can be provided will therefore scale at the same rate as the size of cache

memories.

As in a limited pointers directory, here also it is possible to run short of free pointers. This occurs if a

pointer is to be allocated from the free list but the free list is found to be empty. The action to take on such

instance is to use some means to select a pointer and then free it by sending invalidation to the cache identified

by that pointer. The selection of the pointer can be on random basis using some hardware register. Since the

address of the block is needed to send an invalidation message, the list beginning at the pointer indicated by the

register must be traversed until the last pointer on the list is found. This address and the pointer can be used to

send invalidation, thereby freeing the pointer/link pair. An interesting effect occurs if caches are allowed to

replace clean blocks without notifying the directory. Stale pointers indicating caches that no longer contain the

data may accumulate in the pointer/link store. If they are not returned to the free list, these stale pointers could

potentially occupy most of the pointers that would otherwise be free, perhaps causing the directory to run short

of free pointers frequently. This is undesirable since processing a read miss which is the most frequent directory

operation, will be considerably slower at the directory if no free pointers remain. So while not required for

correctness, enhancing the protocol by having caches send replacement notifications to the appropriate directory

when a clean block is replaced shell improve the system.

It has been seen that dynamic pointer allocation is more robust than the basic no-broadcast limited

pointers directory, in that it can handle blocks that are shared by many processors without performance

International Journal of Advanced Trends in Engineering and Technology (IJATET)

Impact Factor: 5.665, ISSN (Online): 2456 - 4664

(www.dvpublication.com) Volume I, Issue I, 2016

32

degradation. The data blocks fall roughly into three categories. First, there are blocks for which the available

pointers are rarely exhausted. All of the limited pointers schemes perform well for these blocks. Second, there

are blocks with only moderately high read/write ratios that use all of their pointers with some frequency. Finally,

there are blocks with very high read/write ratios. Standard no-broadcast schemes have only a minor negative

impact for blocks with moderately high read/write ratios, but do not exploit the opportunity to significantly

reduce miss rates for blocks with high read/write ratios [7]. On the other hand, the coarse vector schemes will

perform well for blocks with high read/write ratios since writes are infrequent and miss rates are low. However,

their performance suffers for blocks with moderately high read/write ratios. For such blocks, the coarse vector

strategy will cause substantial traffic due to extra invalidations unless the number of caches represented by each

bit can be kept small.

6. Implementation of Sparse Directory:
The sparse directories scheme is based on the following observation that at any point of time only a few

memories can be resident in cache. Here usually cache size will be lesser than the memory size. Given that

coherence protocol only needs sharing information for lines in the cache, most directory entries are emty or not

used in most of the time. For example, 1MB cache with 1GB main memory leads to 99.9% waste of directory

space. The basic idea of the method is to minimum the overhead of the empty entries in the directory. A typical

way to achieve this is to leverage the link list tructure. For details, we have a linked list for each memory block.

All cache lines of the specified block, probably in different nodes, are organized as linked list through an

additional previous/next pointer in the cache line. To find the head of each list, we can have a single head

pointer per line in memory. A more practical alternative would be to simply maintain a small lookup table

storing the head of the list for cached lines. The sparse directory scheme can reduce the space overhead

dramatically. We have some additional pointers in each node's cache, of which the size is proportional to the

cache size. And we have a small lookup table in memory. However data write applications, we have to iterate

through the list, which make the latency proportional to the number of sharers.

7. Reducing Operations in Terms of Messages:
Another option where in the performance of Directory based cache coherence system that could be

enhanced for optimization is in terms of minimising the total number of message exchanges that take place

while implementation the coherency. Here mainly we take in to considerations the request for a cache line from

requesting node to its home node, and the way how home node is going to serve this request. Mainly there are 2

approaches for serving this kind of request, Intervention Forwarding and Request Forwarding. While

considering the case of a read miss on dirty block, in order to serve the request, first the requesting node has to

send the request to Home node, and the Home node will forward the Owner node id to the requesting node.

Later requesting node sends data request message to Owner node, and Owner reply’s data to requesting node.

Finally Data and directory update message has to be sent to Home node from the Owner node. Hence totally

there will be 5 message needs to be exchanged in order to serve the request.

Message Reduction by Intervention Forwarding:
While considering the case of a read miss on dirty block, in Intervention Forwarding, first the request

is sent to Home node, and the Home node will forward the Intervention Read message to the Owner node, the

Owner node is going to reply with Data to Home node, and finally Home node will response to Request node

with Data. Hence totally 4 message sequence will be required to serve this particular request with Intervention

Forwarding method.

Message Reduction by Request Forwarding:
While considering the case of a read miss on dirty block, in Request Forwarding, the request node will

first send the request to Home node, and the Home node will send the request to send data to the requesting

node. The Owner node is going to reply to Home node as well as the requesting node with Data in single

message. Hence totally 3 message sequence will be required to serve this particular request with Request

Forwarding method.

8. Conclusion:
The directory-based cache coherence protocol is a scalable approach compared with snooping-based

protocol. It avoids broadcasts by storing information about the status of the cache line in a directory and use

point-to-point message communication. However, the naive implementation of directory-based cache coherence

has much storage overhead, which limits its performance. With Limited Pointer scheme, they replaced the

vector with several pointers, which are log n bit fields that encode the unique identities of those caches

containing the data block. With this approach it is possible to have the directory entry with at least three

pointers for most large-scale systems, and keeping the memory overhead much lesser than traditional directory

schemes. Similar to the limited pointers directories, Dynamic Pointer Allocation Directory scheme uses pointers

that contain the unique identities of those caches containing the data. The dynamic pointer allocation directory

adds less storage to each data block than a standard limited pointers directory with several pointers per entry.

This scheme has resulted with good storage efficiency even in the presence of large caches. Sparse Directory

Scheme will simply maintain a small lookup table storing the head of the list for cached lines and can reduce the

International Journal of Advanced Trends in Engineering and Technology (IJATET)

Impact Factor: 5.665, ISSN (Online): 2456 - 4664

(www.dvpublication.com) Volume I, Issue I, 2016

33

space overhead dramatically. Here we have some additional pointers in each node's cache, of which the size is

proportional to the cache size. However when writing data it needs to iterate through the list and may result

with some latency factor. Techniques like Intervention forwarding and Request Forwarding will reduce the total

number of message exchanges required while implementing the Cache Coherency and hence limit the network

bandwidth.

9. References:
1. Design and Implementation of a Directory based Cache Coherence Protocol by Dimitris Tsaliagos

Technical Report FORTH-ICS/TR-418 May 2011

2. Effects of cache coherency in Multiprocessors, By Michel Dubois, Member- IEEE, and Faye A. Briggs,

Member-IEEE

3. Prof. M. Shaaban’s EECC 756 Lecture notes on Cache Coherence Problem in Shared Memory

Multiprocessor.

4. Parallel Computer Architecture (PCA) BY David E. Culler and Jaswinder P. Singh (1999 edition).

5. http://parasol.tamu.edu/~rwerger/Courses/654/cachecoherence1.pdf

6. CS252 Graduate Computer Architecture. A course by David A. Patterson in CS Department of UC

Berkeley.

7. Cache Coherence Directories for Scalable Multiprocessors -Rrichard Simoni-Stanford, California -

Technical report

8. Subrahmanya Bhat & K. R. Kamath, Directory Organizations in Cache Coherency Systems for High

Performance Computation, International Journal of Current Research and Modern Education

(IJCRME), Volume I, Issue I, p.p 868-871, (August,2016), ISSN (Online): 2455 – 5428

9. Subrahmanya Bhat & Dr. K. R. Kamath, Directory Based Cache Coherency Protocol In Multi-Core

System For High Performance Computation, International Journal of Current Research and Modern

Education (IJCRME) Volume I, Issue I, pp. 257-261, (May 2016), ISSN : 2455 – 5428

10. Subrahmanya Bhat B and Dr. K.R Kamath, Cache Hierarchy in Modern Processors and Its Impact on

Computing, International Journal of Management, IT and Engineering (IJMIE), Volume 5, Issue 7, pp.

248-253, (July 2015), ISSN: 2249-0558, I.F. 5. 299

11. Subrahmanya Bhat & K. R. Kamath, Optimization Approaches in Directory based Cache Coherency

Systems for High Performance Computation, International Journal of Current Research and Modern

Education (IJCRME), ----Volume I, Issue I, p.p 868-871, (August,2016), ISSN (Online): 2455 – 5428

