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Abstract: 

To ensure the actual occurrence of a real reasonable feature in contrast to a fake self manufactured 

synthetic or reconstructed sample is a significant problem in biometric confirmation, which requires the 

development of new and efficient protection procedures. In this paper, we present a novel software-based fake 

detection method that can be used in multiple biometric systems to detect different types of deceitful access 

attempts. The objective of the proposed system is to enrich the security of biometric appreciation frameworks, 

by adding live ness assessment in a fast, user-friendly, and non-intrusive manner, through the use of image 

worth assessment. The proposed approach presents a very low degree of difficulty, which makes it suitable for 

real-time applications, using 25 general image quality structures extracted from one image (i.e., the same 

acquired for authentication purposes) to distinguish between appropriate and impostor samples. The 

investigational results, obtained on publicly available data sets of fingerprint, iris, and 2D face, show that the 

proposed method is highly economical compared with other state-of-the-art attitudes and that the analysis of the 

common image quality of real biometric samples reveals highly valuable evidence that may be very efficiently 

used to distinguish them from fake traits. 

Key Words: Weber Local Descriptor (WLD), Convolutional Neural Networks (CNN) & Local Phase 

Quantization (LPQ) 

1. Introduction: 

The basic aim of biometrics is to automatically discriminate subjects in a reliable manner for a target 

application based on one or more signals derived from physical or behavioral traits, such as fingerprint, face, 

iris, voice, palm, or handwritten signature. Biometric technology presents several advantages over classical 

security methods based on either some information (PIN, Password, etc.) or physical devices (key, card, etc.) 

[2].However, providing to the sensor a fake physical biometric can be an easy way to overtake the systems 

security. Fingerprints, in actual, can be easily deceived from common materials, such as gelatin, silicone, and 

wood glue [2]. Therefore, a safe fingerprint system must correctly distinguish a spoof from an authentic finger 

(Figure 1). Different fingerprint live ness detection algorithms have been proposed [3], [4], [5], and they can be 

broadly divided into two approaches: hardware and software. In the hardware approach, a exact device is added 

to the sensor in order to sense particular assets of a living trait such as blood pressure [6], skin distortion [7], or 

odor [8]. In the software approach, which is used in this study, fake traits are detected once the sample has been 

acquired with a standard sensor. The features used to distinguish between real and fake fingers are extracted 

from the image of the fingerprint. There are techniques such as those in [2] and [9], in which the features used in 

the classifier are based on specific finger print measurements, such as elevation strength, continuity, and clarity. 

In contrast, some works use common feature extractors such as Weber Local Descriptor (WLD) [10], which is a 

texture descriptor composed of differential excitation and orientation components. A new local descriptor that 

uses local fullness contrast (spatial domain) and phase (frequency domain) to form a bi dimensional contrast-

phase histogram was proposed in [11]. In [12] two general feature extractors are compared: Convolutional 

Neural Networks (CNN) with random (i.e., not learned) weights (also explored in [13]), and Local Binary 

Patterns (LBP), whose multi-scale variant reported in [14] achieves good results in fingerprint live ness 

detection benchmarks. In contrast to more sophisticated techniques that use texture descriptors as features 

vectors, such as Local Phase Quantization (LPQ) [15], LBP with wavelets [16], and BSIF [17], their LBP 

implementation uses the original and uniform LBP coding schemes. Moreover, a variety of optional 

preprocesses techniques such as contrast normalization, frequency filtering, and region of interest (ROI) 

extraction were attempted without success. Augmented datasets [18] [19] are successfully used to increase the 

classifiers robustness against small variations by creating additional samples from image translations and 

horizontal reflections. In this study we extend the work presented in [12] by using a similar model from the 

well-known Alex Net [19], pre-trained on theILSVRC-2012 dataset[20], which contains over 1.2 million images 

and 1000 classes, and then fine-tuned on fingerprint images. We show that although the pre-trained model was 

designed to detect objects in natural images, fine-tuning it to the task of fingerprint live ness detection yields 
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better results than if trained the model using randomly initialized weights. Furthermore, we train our system 

using a larger pre-train model [21], VGG, the second place in the ILSVRC-2014 [20], to increase the accuracy 

of the classifier by another 2% in absolute values. Thus, the contributions of this study are three-fold:_Deep 

networks designed and trained for the task of object recognition can be used to achieve state-of-the-art accuracy 

in fingerprint live ness detection. No specific hand engineered technique for the task of fingerprint live ness 

detection was used. Thus, we provide another success case of transfer learning for deep learning techniques._ 

Pre-trained Deep networks require less labeled data to achieve good accuracy in a new task._ Dataset 

augmentation helps to increase accuracy not only for deep architectures but also for shallow techniques such as 

LBP. 

 
2. Methodology: 

Relocation Learning is a enquiry problem in machine culture that focuses on storing knowledge gained 

while solving one problem and applying it to a different but related problem. Fig. 2. Some images from the 

Image NET dataset used to pre-train then networks. Despite their difference to the fingerprint images, pre-

training with natural images do help in the task of fingerprint live ness detection. Fig. 3. Illustration of the 

models used in this study. The boxes in red are theonly layers that are different from the original VGG-19 and 

Alex net models. In this study, we showed that it is possible to achieve state of-the-art fingerprint live ness 

detection by using models that were originally designed and trained to detect objects in natural images (such as 

animals, car, people). The same idea is explored in [22], for which the authors achieved state of the art 

performance in CIFAR-10, Flicker Style Wiki paintings benchmarks using a pre-trained convolutional network. 

One important difference from their experiments to ours is that all the datasets they used contain similar images 

to the Image NET dataset (Figure 2), such as objects and scenes. In our study, fingerprint images were used, 

which differ significantly from those of other domains. 

A. Models: Table I describes the models in this study. All of them used dataset augmentation. Additionally, we 

show the architecture of the models in Figure 3. For CNNVGG and CNN-Alex net, the architecture is the same 

as described in [20] and [19] respectively, except that we replaced the last 1000-unit soft max layer by a 2unit 

soft max layer (shown in red in the figure), so the network can output the 2 classes (if the image is real or fake) 
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instead of the original 1000 classes that the networks were designed for. For the CNN-Random the architecture 

is different for each dataset and it was chosen via an extensive grid-search as described in [12]. 

B. Convolutional Networks: Convolutional Networks [23] have demonstrated state-of the-art performance in a 

variety of image recognition bench Model Name Pipeline Description CNN- VGG 16 Convolutional Layers + 3 

Fully Connected Layers Pretrained model from [20] and fine tuned using live ness detection datasets. CNN-Alex 

net 8 ConvolutionalLayers + 3 Fully Connected Layers Pre-trained model from [18] and fine tuned using live 

ness detection data sets. CNN-Random CNN-Random +PCA + SVM Features are extracted using Convolutional 

Networks. The feature vector is reduced using PCA and then fed into a SVM classifier using (Gaussian) RBF 

kernel. LBP LBP + PCA + SVM Features are extracted using LBP. The feature vector is reduced using PCA and 

then fed into a SVM classifier with (Gaussian) RBF kernel. 

Summary of the Models Used in this Study: Marks, such as MNIST [24], CIFAR-10 [24], CIFAR100 [24], 

SVHN [24], and Image Net [25]. A classical convolutional network is composed of alternating layers of 

convolution and local pooling (i.e., subsampling). The aim of a convolution allayer is to extract patterns initiate 

within resident regions of the in putted similes that are common throughout the dataset by convolving a template 

over the inputted image pixels and out putting this as a feature map c, for each filter in the layer. A non-linear 

task f(c) is formerly pragmatic element-wise to each feature map c: a = f(c). A range of functions can be used for 

f(c), with max(0; c) a common choice. The result in activations f(c) are then passed to the pooling layer. This 

aggregates the information within a set of small local regions, R, producing a pooled feature map s (normally of 

smaller size)as the output. Denoting the aggregation function as pool (), for each feature map c we have: sj= 

pool(f(ci))8i 2 Rj, where Rjis the pooling region j in feature map c and i is the catalog of every  division within 

it. Among the countless types of amalgamating, max-pooling is generally used, which selects the maximum 

value of the region Rj.The drive behind pooling is that the activations in the pooled map s are less searching to 

the precise locations of structures within the image than the original feature map c. In a multi-layer model, the 

convolutional layers, which take the collective maps as input, can thus extract features that are increasingly 

invariant to local revolutions of the input image [26] [27]. This is important for ordering tasks, since these 

transformations obfuscate the object identity. Achieving invariance to changes in position or lighting conditions, 

robustness to clutter, and compactness of representation, are all common goals of pooling. 

 
Figure 4 illustrates the feed-forward pass of a single layer convolutional network. The input sample image will 

convoluted with three random filters of size 5x5 (enlarged to make visualization easier), producing 3 elaborate 

images, which are then subject to nonlinear function max(x; 0), followed by a max-pooling operation, and 

subsampled by a factor of 2. In this study we compared three different models of convolutional networks. The 

first one, CNN-Random, uses only random filter weights draw from a Gaussian distribution. Although the filter 

weights can be learned, filters with random weights can perform well and they have the advantage that they do 

not need to be learned [28] [29] [30] . The architecture of the model is the same as that used in [12]. It uses 

convolutional network with random weights as the feature extractor, the dimensions are further reduced using 

PCA and a SVM classifier with RBF kernels used as the classifier. An extensive search for hyper parameter 

fine-tune was performed automatically on more than 2000 combinations of hyper-parameters The best hyper-

parameters were chosen per sensor and per dataset (ex. Biometrika 2009) Bimetrika 2011 through validation 

method [31] which used the training dataset of each sensor in each Liv Det dataset (2009, 2011, 2013). 

Pipeline 

Element 

Hyper-parameter Range 

CNN-Random # Layers 1, 2, 3, 4, 5 

CNN-Random # Filters (in each layer) 32, 64, ..., 2048 

CNN-Random Filter Size Convolution 5x5, 7x7, ..., 15x15 

CNN-Random Filter Size Pooling 3x3, 5x5, 7x7, 9x9 

CNN-Random Stride (reduction factor) 

2, 3, ..., 7 
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LBP Coding Standard or Uniform 

LBP # Images Divisions 1x1 (no division), 3x3, 

5x5, 7x7 

PCA # Components 30, 100, 300, 500, 800, 

1000, 1300 

SVM Regularization Parameter 

C 

0.1, 1, ..., 105 

SVM Kernel coefficient 107, 106, ..., 101 TABLE II 

Range of Hyper-Parameters Searched for the CNN- Random and Lbp Pipelines: The second model, CNN-

Alex net, is very similar to Alex Net [19], pre-trained on the ILSVRC-2012 dataset. This model won both 

classification and localization tasks in the ILSVRC-2012 competition. Their trained model has been used to 

improve accuracy in a variety of other benchmarks such as CIFAR-10, CIFAR-100. The pre-trained network 

provides a good starting point for learning the network weights for other tasks, such as fingerprint live ness 

detection. The third model, CNN-VGG, is very similar to the one used in [21], a 19 layer CNN which achieved 

the second place in the detection task of the Image Net 2014 challenge. For CNN-ALEXNET and CNN-VGG 

models, the last 1000-unit soft-max layer (originally designed to predict 1000 classes) was replaced by a 2-unit 

soft max layer, which assigns a score for true and fake classes. The pre-trained model was further trained with 

the fingerprint datasets. The algorithm used to train CNN-Alex net and CNN.  Figure 4 Illustration of a sequence 

of operations performed by a single layerconvolutional network in a sample image.is the Stochastic Gradient 

Descent (SGD) with a mini batch of size 5, using momentum [32] [33] 0.9 and a fixed learning rate of 10 -6. C. 

Local Binary Patterns Local Binary Patterns (LBP) are a local texture descriptor that have executed well in 

countless computer vision tenders, including texture classification and segmentation, image retrieval, surface 

inspection, and face detection [34]. It is a widely used method for fingerprint live ness detection [14] and it is 

used in this work as a baseline In its original version, the LBP operator assigns a label to every pixel of an image 

by thresholding each of the 8 neighbors of the 3x3-neighborhood with the center pixel value and considering the 

consequence as a unique 8-bit code representing the 256 possible neighborhood combinations. As the 

comparison with the neighborhood is performed with the central pixel, the LBP is an illumination invariant 

descriptor. The operator can be extended to use neighborhoods of different sizes [35]. Another extension to the 

original operator is the definition of so-called uniform patterns, which can be used to reduce the length of the 

feature vector and implement a simple rotation invariant descriptor [35]. An LBP is called uniform if the binary 

pattern contains at most two bitwise transitions from 0 to 1 or vice versa when the bit pattern is considered 

circular. The number of different labels of LBP reduces from 256 to just 10 in the uniform pattern. The 

normalized histogram of the LBPs (with 256 and 10 bins for non-uniform and uniform operators, respectively) 

is used as a feature vector. The assumption underlying the computation of a histogram is that the distribution of 

patterns matters, but the exact spatial location does not. Thus, the advantage of extracting the histogram is the 

spatial invariance property. To investigate if location matters to our problem, we also implemented the method 

presented in [36], for face recognition, where the LBP filtered images are equally divided in rectangles and their 

histograms are concatenated to form a final feature vector. In this study, the histogram of the LBP image was 

further reduced using PCA, and a SVM with RBF kernel is used as the classifier. Similarly to the CNN-Random 

models, the hyper parameters, such as the number of PCA components and SVM regularization parameter, 

where found using an extensive brute force search on more than 2000 combinations, listed in table II. D. 

Increasing the Classifiers Generalization through Dataset Augmentation Dataset Augmentation is a technique 

that involves artificially creating slightly modified samples from the original ones. By using them during drill, it 

is likely that the classifier will converted more vigorous against small discrepancies that may be present in the 

data, forcing it to learn larger (and possibly more important) structures. It has been successfully used in 

computer vision benchmarks such as in [19], [37], and [38]. It is particularly suitable to out-of-core algorithms 

(algorithms that do not need all the data to be loaded in memory during training) such as CNNs trained with 

Stochastic Gradient Descent. Our dataset augmentation implementation is similar to the one presented in [19]: 

from each image of the dataset five smaller images with 80% of each dimension of the original images are 

extracted: four patches from each corner and one at the center. For each patch, horizontal reflections are created. 

As a result, we obtain a dataset that is 10 times larger than the original one: 5 times are due to translations and 2 

times are due to reflections. At test time, the classifier makes a prediction by averaging the individual 

predictions on the ten patches. 

3. Experiments: 

A. Datasets:  The datasets on condition that by the Live ness Finding Opposition (Liv Det) in the years of 2009 

[39], 2011 [40], and 2013 [41] are used in this study. Liv Det 2009 comprises almost 18,000 images of real and 

fake fingerprints acquired from three different sensors (Biometrika FX2000, Cross match Verifier 300 LC, and 

Identix DFR 2100). Fake fingerprints were obtained from three different materials: Gelatin, Play Doh, and 

Silicone. Approximately one third of the images of the dataset are used for training and the remaining for 
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testing. Liv Det 2011 comprises 16,000 images acquired from four different sensors (Biometrika FX2000, 

Digital 4000B, Italdata ET10, and Sagem MSO300), each having 2000 images of fake and real fingerprints. Half 

of the dataset is secondhand for preparation and the other partial for testing. False fingerprints were obtained 

from four different materials: Gelatin, Wood Glue, Eco Flex, and Silgum. Liv Det 2013 comprises 16,000 

images acquired from four different sensors (Biometrika FX2000, Cross match L SCAN GUARDIAN, Italdata 

ET10, and Swipe), each having approximately. 2,000 images of fake and real fingerprints. Partial of the dataset 

is castoff for keeping fit and the other half for taxing. Bogus impressions were obtained from five different 

materials: Gelatin, Latex, Eco Flex, Wood Glue, and Modasil. In all datasets, the factual/forged fingerprint ratio 

is 1/1 and they are equally disseminated between training and testing sets. The sizes of the images vary from 

sensor to sensor, ranging from 240x320 to 700x800 pixels, but they were all resized according to the input size 

of the pre-trained models, which is 224x224 for the CNN-Alexnet model and 227x227 pixels for the CNNVGG 

model. 

B. Performance Metrics: The classification results were evaluated by the Average Classification Error (ACE), 

which is the standard metric for evaluation in Liv Det competitions. It is defined as ACE =SFPR + SFNR 2 (1) 

where SFPR (Spoof False Positive Rate) is the percentage of misclassified live fingerprints and SFNR (Spoof 

False Negative Rate) is the percentage of misclassified fake fingerprints. 

C. Implementation Details: CNN-VGG and CNN-Random were trained using the Caffe package [42], which 

provides very fast CPU and GPU implementations and a user-friendly interface in Python. For the CNN-

Random and LBP models, we wrote an improved cross-validation/grid search algorithm for choosing the best 

combination of hyper-parameters, in which each element of the pipeline is computed only when its training data 

is changed(the term element refers to operations such as preprocessing, feature extraction, dimensionality 

reduction or classification). This modification speeded-up the validation phase by approximately 10 times, 

although the gain can greatly vary as it depends on the element types and number of hyper parameters chosen. 

An important aspect of this work is that the algorithms. Run on cloud service computers, where the user can rent 

virtual computers and pay only for the hours that the machines are running. To train the algorithms, we used the 

GPU instances that allowed us to run dataset augmented experiments in a few hours; using traditional CPUs the 

training would take weeks. 

4. Results: 

The average error for each testing dataset is shown on Table III. Along with the models used in this 

study, we also show the error rate of the state-of-the-art method for each dataset, of which most of them were 

found in the compilation made by [43]. Particularly interesting results are for the Cross match 2013 dataset. As 

commented by [43], most techniques have problems in this dataset. For example, the LBP presents error rates 

close to zero at validation time and around 50% at test time. It container be seen from Liv Det 2013 rivalry 

results that this dataset is mainly hard to generalize, since nine of the eleven participants presented error rates 

greater than 45%. Contrary to these results, CNN models perform very well in this dataset, with error rates 

between 3.2%-4.7%. 

Dataset State-of the- 

Art 

CNNVGG 

CNNAlexnet 

CNNRandom 

LBP 

Crossmatch 2013 7.9 [13] 3.4 4.7 3.2 49.4 

Swipe 2013 2.8 [43] 3.7 4.3 7.6 3.3 

Italdata 2013 0.8 [41] 0.4 0.5 2.4 2.3 

Biometrika 2013 1.1 [17] 1.8 1.9 0.8 1.7 

Italdata 2011 11.2 [43] 8.0 9.1 9.2 12.3 

Biometrika 2011 4.9 [11] 5.2 5.6 8.2 8.8 

Digital 2011 2.0 [43] 3.2 4.6 3.6 4.1 

Sagem 2011 3.2 [11] 1.7 3.1 4.6 7.5 

Biometrika 2009 1.0 [11] 4.1 5.6 9.2 10.4 

Crossmatch 2009 3.3 [43] 0.6 1.1 1.7 3.6 

Identix 2009 0.5 [43] 0.2 0.4 0.8 2.6 

Average 3.5 2.9 3.7 4.7 9.6 

A. Average Classification Error on Testing Datasets: 

It is important to highlight that CNN-Random did require an exhaustive hyper-parameter fine tune 

(number of layers, filter size, number of filters, etc.) in order to get a model with good accuracy. On the other 

hand, the architectures of CNNA lexnet and CNN-VGG, which were already carefully selected for the Image 

Net object detection task, are general enough to be reused for the fingerprint Live ness detection task and yield 

excellent accuracy. Another interesting aspect is that the CNN-VGG performed better than the CNN-Alex net in 
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both object detection from ILSVRC-2012 and fingerprint Live ness detection tasks. This suggests that further 

improvements in models for object recognition can be applied to increase accuracy in fingerprint Live ness 

detection. The higher performance of our CNNVGG solution was confirmed as this model won the first place in 

the Fingerprint Live ness Detection 2015 Competition (Liv Det) 2015 [1], with an overall accuracy of 95.51%, 

while the second place achieved an overall accuracy of 93.23%. A. Effect of dataset augmentation Table IV 

compares the effect of dataset augmentation in our proposed models. Despite its longer training and running 

times, the technique helps to improve accuracy: the error was reduced by a factor of 2 in some cases. More 

importantly, the technique is not only effective on deep architectures, as commonly known, but also in shallow 

architectures, such as LBP. 

Model No Augmentation With Augmentation 

CNN-VGG 4.2 2.9 

CNN-Alexnet 5.0 3.7 

CNN-Random 9.4 4.7 

LBP 21.2 9.6 

Table IV 

Augmentation Vs No Augmentation: Average Error on All Datasets. 

B. Cross-dataset Evaluation: We would like to verify how a classifier would perform when unseen samples 

acquired from spoofy materials and individuals during training are presented at test time. Additionally, we want 

to test the hypothesis that the images share common characteristics for distinguishing fake fingerprints 

Train Dataset Test Dataset CNN-VGG CNN-Alex net CNN- 

Random LBP 

Biometrika 2011 Biometrika 2013 15.5 15.9 20.4 16.5 

Biometrika 2013 Biometrika 2011 46.8 47.0 48.0 47.9 

Italdata 2011 Italdata 2013 14.6 15.8 21.0 10.6 

Italdata 2013 Italdata 2011 46.0 49.1 46.8 50.0 

Biometrika 2011 Italdata 2011 37.2 39.8 49.2 47.1 

Italdata 2011 Biometrika 2011 31.0 33.9 46.5 49.4 

Biometrika 2013 Italdata 2013 8.8 9.5 47.9 43.7 

Italdata 2013 Biometrika 2013 2.3 3.9 48.9 48.4 

Table V 

AverageClassificationError on Cross-Dataset Experiments. 

Dataset Materials - Train Materials - Test CNN-VGG CNNAlexnet CNN-Random LBP 

Biometrika 2011 EcoFlex, Gelatine, Latex Silgum, Wood Glue 10.1 12.2 13.5 17.7 

Biometrika 2013 Modalsil, Wood Glue EcoFlex, Gelatine, Latex 4.9 5.8 10.0 8.5 

Italdata 2011 EcoFlex, Gelatine, Latex Silgum, Wood Glue, Other 22.1 25.8 26.0 30.9 

Italdata 2013 Modalsil, Wood GlueEcoFlex, Gelatine, Latex 6.3 

8.0 10.8 10.7 

Average Classification Error on Cross-Material Experiments- from real ones, that is, the important features for 

classificationare independent from the acquisition device. For that, Cross dataset experiments were performed, 

which involve training a classifier using one dataset and testing on another. Forinstance, a cross-dataset 

experiment would involve training aclassifier using Biometrika-2011 dataset and testing it using Italdata-2013. 

In summary, these experiments should reflecthow well the classifier is able to learn relevant characteristics that 

distinguish real from fake fingerprints when samples acquiredfrom different environments and sensors are 

presented.We chose to use only Biometrika and Italdata sensors fromdatasets of years of 2011 and 2013 of the 

Liv Det competition, since executing all possible dataset combinations would bealmost impractical to run under 

the current computer architecture.All the models evaluated use dataset augmentation.Table V shows the testing 

error. CNN-Alex net and CNNVGGclearly outperform CNN-Random and LBP in mostcases. However, the 

testing error is still high (>20%) in 4out of 8 of the experiments, indicating that the models fail to generalize 

when the type of sensor used for testing is differentfrom the one used in training. Similarly, [14] reported 

thattheir multi-resolution LBP technique had poor results in cross deviceexperiments, with errors of around 40-

50%.  

C. Cross-Material Evaluation: Additionally to the influence of training and testing with different sensors 

(section IV-B), we investigated the performance of the classifiers when they are tested with spoofing materials 

never seen during training. The results are shown in Table VI. The error rates are lower than Cross-dataset 

experiments, which suggests that most of the generalization error can be attributed to different sensors and not to 

different materials. 

D. Training All Datasets at Once: In this experiment we report the error rates when training and testing a 

single classifier using all datasets (2009, 2011, 2013), except for Swipe-2013 whose images are very different 

from the rest. The testing error rates, shown in Table VII, are compared with the results obtained when 

individual classifiers are trained per dataset, which are reported in Table III. The results show that training a 
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single classifier with all datasets yields comparable error rates when individual classifiers are trained per dataset, 

which suggests that the effort to design and deploy a Live ness detection system can be considerably reduced if 

all datasets are trained together, as the hyper parameter fine tuning needs to be performed for only one model. 

Model One Classifier trained with All Training 

Datasets One Classifier per Dataset 

CNN-VGG 3.4 2.9 

CNN-Alexnet 4.1 3.7 

CNN-Random 6.0 4.7 

LBP 10.0 9.6 TABLE VII 

Average Classification Error When a Single Classifier is Trained Using All Datasets Vs One Classifier 

per Dataset. 

E. Pre-Training Effect: In this experiment the effect of using pre-trained networks is investigated. Table VIII 

compares the accuracy for the CNNVGG and CNN-Alex net models trained using only fingerprint images and 

when they are first pre-trained with the Image Net dataset and then fine tuned with fingerprint images. It can be 

seem that pre-training is necessary for those large networks as training them using only the fingerprint images 

results in over fitting.Model Training on Liv Det datasets Only Training on Image Net then Liv Det datasets 

CNN-VGG 49.4 (0.0) 2.9 (1.5) 

CNN-Alexnet 48.1 (0.0) 3.7 (1.2) 

Table VIII 

Average ClassificationError For Testing Dataset Comparing the Efficacy of Pre-Trained Models with 

the Ones Solely Trained On The Liv Det Datasets.  

The Training Error Is Showed In Parenthesis 

F. Number of Training Samples vs Error: Deep learning techniques require large number of labeled training 

data in order to achieve a good performance when the models are initialized with random weights, since there 

are a lot of parameters that must be learned, thus requiring many samples. However, when the weights were 

already learned from another task, the number of required samples can be surprisingly low in order to achieve 

good accuracy. Figure 5 shows the number of training samples versus the average classification error in the test 

set for all datasets. Using only 400 training samples, CNN-VGG has almost the same performance as LBP using 

all the 18,800 training images. This suggests that less samples are needed when pre-trained models are used. 

G. Processing Times: In real applications, a good fingerprint live ness detection system must be able to classify 

images in a short amount of time. Table IX shows the average testing/classification times for a single image (no 

augmentation) on a single core machine (1.8 GHz, 64-bit, with 4GB memory). We also show the times for 

training all datasets together. The pre-trained CNN models (CNN-Alex net and CNN-VGG) take around 5-40 

hours to converge using a Nvidia GTX Titan GPU. The CNN-Random and LBP models take around 5-10 hours 

to converge on a 32-Cores machine (the larger portion of these times are required for dimensionality reduction 

using PCA). 

Technique Training all Datasets Testing per 

Image (1-core-CPU) 

CNN-VGG 20-40 hours (GPU) 650ms 

CNN-Alex net 5-10 hours (GPU) 230ms 

CNN-Random 5-10 hours (32-core CPU) 110ms 

LBP 5-10 hours (32-core CPU) 50ms 

Table IX 

Average Training and Testing Times 

5. Conclusion: 

Convolutional Neural Networks were used to detect false vs real fingerprints. Pre-trained CNNs can 

yield state-of-the-art results on benchmark datasets without requiring architecture or hyper parameter selection. 

We also showed that these models have good accuracy on very small training sets (˜400 samples). Additionally, 

no task-specific hand-engineered technique was used as in classical computer vision approaches. Despite the 

differences between images acquired from different sensors, we show that training a single classifier using all 

datasets helps to improve accuracy and robustness. This suggests that the effort required to design a live ness 

detection system (such as hyper-parameters fine tuning) can be significantly reduced if different datasets (and 

acquiring devices) are combined during the training of a single classifier. Additionally, the pre-trained networks 

showed stronger generalization capabilities in cross-dataset experiments than CNN with random weights and the 

classic LBP pipeline. Dataset augmentation plays an important role in increasing accuracy and it is also simple 

to implement. We suggest that the method should always be considered for the training and prediction phases if 

time is not a major concern. Given the promising results provided by the technique, more types of image 

transformations should be included, such as color manipulation and multiple scales described in [44] and [45]. 
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