
International Journal of Advanced Trends in Engineering and Technology (IJATET)

Impact Factor: 5.665, ISSN (Online): 2456 - 4664

(www.dvpublication.com) Volume 2, Issue 1, 2017

74

ANALYSIS OF BERGER CODE BASED FAULT TOLERANT

TECHNIQUES FOR EMBEDDED SYSTEM

S. Mathuram* & R. Thulasimani**
* Assistant Professor, Electronics and Communication Engineering, SSM College of

Engineering, Komarapalayam, Tamilnadu

** Associate Professor, Electronics and Communication Engineering, SSM College of

Engineering, Komarapalayam, Tamilnadu

Cite This Article: S. Mathuram & R. Thulasimani, “Analysis of Berger Code Based

Fault Tolerant Techniques for Embedded System”, International Journal of Advanced Trends in Engineering

and Technology, Page Number 74-78, Volume 2, Issue 1, 2017.

Abstract:

 With continued scaling of silicon process technology, producing reliable electronic components in

extremely denser technologies pose a challenge. Further, the systems fabricated in deep sub-micron technology

are prone to intermittent or transient faults, causing unidirectional errors, upon exposure to ionizing radiations

during system operation. The ability to operate in the intended manner even in the presence of faults is an

important objective of all electronic systems.In order to achieve fault-tolerance, each module of the system must

be fault-tolerant by possessing run-time (or online) fault detection capabilities. Totally Self-checking (TSC)

circuits permit online detection of hardware faults. The objective of this project is to analyze the area (resource

utilization), speed and power consumption for n bit Look-Up Table (LUT) implementation with and without

fault detection capability using Berger technique on Xilinx FPGA. The Berger code is the least redundant

systematic code available for detecting all single and multi bit unidirectional errors. This project is proposed to

find the fault in 4, 8, 16, 32 bits LUT. The fault will be detected by Berger checker architecture.

Key Words: Fault Tolerance; Totally Self-Checking Circuits, Unidirectional Errors, Berger code.

1. Introduction:

 In recent times due to technological advancements, the performance of integrated circuits has increased

a lot also lower device sizes, low power consumption have also helped to improve the performance of the

devices. But on the other hand, modern devices have become more susceptible to transient faults and when these

faults are executed, it creates soft errors. So soft errors are errors which are not consistent rather they are

random. Although Soft errors cannot damage the physical hardware of the chip however they can corrupt the

value stored in the chip. Hard errors are related to the system hardware. So the difference between soft errors

and hard errors is that, soft errors can be corrected by applying different techniques where as to rectify hard

errors physical changes has to be done on hardware. Soft errors can occur due to environmental conditions such

as radiation flux, alpha particles, cosmic rays, power supply fluctuations, temperature, pressure, humidity and

electromagnetic interference. The errors occurring in an electronic circuit can be broadly classified as

symmetric, asymmetric, and unidirectional errors. The error is symmetric if both 0 to 1 and 1 to 0 transitions

occur simultaneously in a data word. If only 0 to 1 or 1 to 0 transitions are likely, and the error type is known a

priori, then the errors are asymmetric. If both 0 to 1 and 1 to 0 transitions can occur in data words, but in any

particular word all errors are of one type, then the errors are called unidirectional errors. The ability to operate in

the intended manner even in the presence of faults is an important objective of all electronic systems. In order to

achieve fault-tolerance, each module of the system must be fault-tolerant by possessing concurrent fault

detection capabilities. Fault detection methods can be broadly classified as Built-In Self-test, roving technique,

redundancy technique, logic implications technique and error coding technique. Redundancy is based on either

modular redundancy or time redundancy. In modular redundancy, the functional module is replicated two or

three times. In time redundancy, the same function is performed by the same functional module more than once.

Any difference in these outputs indicates a fault. It is obvious that there is an area overhead or latency overhead

by two or three times when using redundancy techniques. Faults can be detected by verifying the code with

binary data. Many unidirectional error detecting codes like Parity code, Hamming code, Reed Solomon code,

Berger code and Bose code are available. Berger code can detect all multiple unidirectional errors. Self-

checking circuit using Berger code can have Berger encoder implemented as a sequential circuit or as a

combinational circuit. The sequential circuit implementation requires more resource overhead to implement

counter circuits and takes multiple clock cycles to detect the error. The combinational circuit implementation

takes more hardware latency.

2. System Design:

 The proposed system is an analysis of fault tolerant techniques for embedded architectures with n bit

LUT. In order to achieve fault-tolerance, each module of the system must be fault-tolerant by possessing run-

time (or online) fault detection capabilities. Totally Self-checking (TSC) circuits permit online detection of

hardware faults. The objective of this project is to analyze the area (resource utilization), speed and power

consumption for Look-Up Table implementation with and without fault detection capability using Berger

combinational and sequential checker circuits on Xilinx FPGA. This project is proposed to find the fault in 4 bit

International Journal of Advanced Trends in Engineering and Technology (IJATET)

Impact Factor: 5.665, ISSN (Online): 2456 - 4664

(www.dvpublication.com) Volume 2, Issue 1, 2017

75

LUT. The fault will be detected by Berger checker architecture and the fault will be automatically corrected. A

LUT (Lookup table) is a one bit wide memory array. LUT‟s can be programmed and reprogrammed to change

the logical function implemented. Multiplexers and LUTs are typical configurable devices, while D latches are

not really configurable, although their asynchronous control signals (reset, clock) are configurable by means of

multiplexers. The Berger code counts the number of 1's in the word and expresses it in binary. Less logic is

required to implement the Berger check error detection. It detects all unidirectional bit errors, i.e., if one or more

ones turn into zeros it can be identified, but at the same time, zeros converted into ones cannot be identified. If

the same number of bits from one to zero as from zero to one, then the error will not be detected. If the number

of data bits is k, then the check bits (c) are equal to log2 (k + 1) bits. Hence, the overhead is log2((k+1)=k).

These codes have been designed to be separable codes that are also perfect error detection codes in a completely

asymmetric channel. The proposed system consists of

 Look Up Table without fault tolerance

 Look Up Table with Berger combinational checker circuit

3. Berger Code:

 Currently, the Berger code is most commonly used inapplications where a systematic code is

needed.Berger code (BC) is an optimal separable code which candetect all unidirectional errors. A Berger code

word of lengthn bits has I information bits and k check bits, where [k=log2 (I+1)], n=I+k. A code word is

constructed by forming a binary numbercorresponding to the number of ones in the I information bits, and

appending the bit-by-bit complement of the binary number as check bits to the information bits. The check bits

for Berger codes canbe generated by using two different schemes.The scheme that uses the bit-by-bit

complement of the binary number corresponding to the number of 1's in the information bits is known as the B1

encoding scheme. The other scheme, which uses the binary number corresponding tothe number of 0's in the

information bits as check bits, isidentified as the B0 encoding scheme. If the number of information bits in a

Berger code is I= (2
k
-1), k≥1, then it is called a maximal length Berger code; otherwise it is known as the non-

maximal length Berger code. The Berger codes are useful for encoding the informationbits in digital systems

because:

 They are separable codes. No extra decoders are requiredto extract the information bits, when needed

for processing, from the code word.

 They detect all unidirectional errors; these are mostlikely to occur in digital systems.

 They are optimal, in terms of the number of check bitsrequired for I information bits, among all the

separable codesthat detect unidirectional errors.

4. Look Up Table:

Figure 1: Block Diagram of LUT

 As shown in figure 1, A LUT (Lookup table) is a one bit wide memory array. LUT‟s can be

programmed and reprogrammed to change the logical function implemented. The fig shows the block diagram

of LUT. It consists of 4 D latch and one 4:1 multiplexer. The LUT can be implemented with the cascade

connection of D latch and one 4:1 multiplexer. The LUT output F depends upon the selection lines S1 S0. During

programming, the bit stream is configured in D latch. For example: When S1 S0 = 00, the first D latch D0 is

selected and routed to the MUX output (F). Similarly, When S1 S0 = 01, the second D latch D1 is selected and

routed to the MUX output (F). When S1 S0 = 10, the third D latch D2 is selected and routed to the MUX output

(F). When S1 S0 = 11, the fourth D latch D3 is selected and routed to the MUX output (F). When PROG signal is

low, the content of D latch is configured to the output F. The function table explains the operation of LUT as

shown in table 1

Table 1: Function Table for LUT

Control Signal Selection Lines Output

Prog S1 S0 F

0 00 D0

0 01 D1

0 10 D2

0 11 D3

International Journal of Advanced Trends in Engineering and Technology (IJATET)

Impact Factor: 5.665, ISSN (Online): 2456 - 4664

(www.dvpublication.com) Volume 2, Issue 1, 2017

76

1 xx Z

5. Look Up Table With Berger Checker Circuit:

Figure 2: Block Diagram of Look Up Table With Berger Checker Circuit

 As shown in figure 2, the block diagram consists of Look up Table (LUT), memory, Berger Error

check bit generator, Comparator and Tristate buffer. A LUT is a memory array which can be reconfigured and

consists of four D latches and 4:1 multiplexer. The Berger error checker structure consists of full adder and two

half adder modules. It is available for detecting the single and multi-bit errors. The other block is memory which

consisting of three D latches. The predefined bit stream is stored in memory. The common four inputs D (3:0)

are given to LUT and Berger error check bit generator. If PROG is enabled, then the LUT start to store the input

value else disabled, then the process is enabled in the overall blocks. The information is being stored in the

LUT. D latches and 4:1 multiplexer are used to process that information through selective lines S1 and S0 to

generate the output F. The contents of D latches are given to the Berger error check bit generator to count the

number of 1‟s in the bit stream. The output of Berger error check bit generator is compared with the predefined

bit stream from memory element. LUT output and comparator output are given to Tristate buffer. If comparator

produces an error output the Tristate buffer goes to high impedance else no error in the comparator, the LUT

output will be the tri state buffer output. For example, D has the value of „0001‟, D is the input for LUT and

Berger error check bit generator. The output of LUT will be defined using select lines through multiplexer. The

Berger error check bit generator will convert „0001‟ to „001‟ where counting the number of 1‟s in input bit

stream. The memory element already has the predefined value ‟001‟.The comparator compares the both output

values from memory element and Berger error check bit generator. If 0 is output, then the LUT output is the

output of Tristate buffer else 1 is output, Tristate buffer goes to high impedance state. If PROG is disabled, then

the output will be available in tristate buffer output as shown in table 2

Table 2: Function Table for Block Diagram of Look Up Table With Berger Checker Circuit

LUT Berger Checker Circuit Memory Element Comparator Output Output

0001 001 001 0 LUT output

0000 000 001 1 High impedance

6. Berger Error Check Bit Generator:

Figure 3: Block Diagram of Berger Error Check Bit Generator

 As shown in figure 3, The Berger error check bit generator generates a 3 bit information by counting the

number of 1‟s in the stored input bit stream using a full adder followed with a half adder1. The sum of the half

adder1 is the LSB and the carryout of full adder and the half adder is provided to another half adder2 to generate

the remaining two bits with its carry as MSB.

7. Software Description:

Xilinx Ise: Xilinx Integrated Software Environment is a software tool produced by Xilinx for synthesis and

analysis of HDL designs, enabling the developer to synthesize ("compile") their designs, perform timing

http://en.wikipedia.org/wiki/Xilinx
http://en.wikipedia.org/wiki/Hardware_description_language
http://en.wikipedia.org/wiki/Logic_synthesis
http://en.wikipedia.org/wiki/Static_timing_analysis
http://en.wikipedia.org/wiki/Static_timing_analysis

International Journal of Advanced Trends in Engineering and Technology (IJATET)

Impact Factor: 5.665, ISSN (Online): 2456 - 4664

(www.dvpublication.com) Volume 2, Issue 1, 2017

77

analysis, examine RTL diagrams, simulate a design's reaction to different stimuli, and configure the target

device with the programmer.

Synthesis and Simulation Design for Xilinx: The Synthesis and Simulation Design Guide provides a general

overview of designing Field Programmable Gate Arrays (FPGA) devices with Hardware Description Languages

(HDLs). It includes design hints for the novice HDL user, as well as for the experienced user who is designing

FPGA devices for the first time. Before using the Synthesis and Simulation Design Guide, you should be

familiar with the operations that are common to all Xilinx tools.

8. Hardware Description:

 The Spartan-3 families of Field-Programmable Gate Arrays are specifically designed to meet the needs

of high volume, cost-sensitive consumer electronic applications. Spartan-3 FPGAs are ideally suited to a wide

range of consumer electronics applications, including broadband access, home networking, display/projection

and digital television equipment. The Spartan 3 Development Kit provides a platform for engineers designing

with the Xilinx Spartan 3 FPGA. The board provides the necessary hardware to not only evaluate the features of

the Spartan 3 but also to implement complete user applications. The Spartan-3 Development board was designed

to support the Spartan-3 FPGA in the 676-pin, BGA package (FG676). The FG676 package supports three mid-

range densities (1000, 1500, and 2000). The board was designed to support two of the three densities: the

3S1500 and 3S2000. The schematic symbol used for the Spartan-3 device indicates the specific I/O pins

available in each density (396 I/Os with 2VP7 and 556 I/Os with the 2VP20/30). The Spartan-3 Development

board supports Boundary-scan as well as Master/Slave Serial and Master/Slave Parallel (Select MAP) using the

on-board PROMs. The Platform Flash PROM(s) provide easy-to-use non-volatile storage for the configuration

file. These devices are in–system programmable via the boundary scan chain and may program the FPGA in

Master Serial, Master Select MAP, Slave Serial, or Slave Select MAP modes. The Spartan-3 Dev Board

includes two standard 6-pin Mini-Din (PS2) connectors labeled JS1 and JS2. The Spartan-3 Development board

is populated with 32MB DDR SDRAM, 16MB Flash, and 2MB SRAM. Additional memory including Flash,

SDRAM, and SRAM are available. The Spartan-3 Development Kit includes a 5V AC/DC Adapter that plugs

into the board at “J7”. The Spartan-3 Development board uses a 5V AC/DC adapter (supplied with the kit) with

center positive barrel connector

9. Simulation Results:

Figure 4: Simulation output for LUT

Figure 5: Simulation output for LUT with Berger combinational checker circuit

10. Implementation Result:

Table 3: Comparison Summary

Parameters
LUT Without Fault

Tolerance

LUT With Berger Combinational

Checker Circuit

Device Utilization

Logic Utilization Used Utilization Used Utilization

Number of Slices 2 0% 8 0%

Number of slice Flip Flops 5 0% 4 0%

Number of 4 input LUTs 4 0% 12 0%

Number of bonded IOBs 8 5% 12 8%

Number of GCLKs 2 25% 2 25%

http://en.wikipedia.org/wiki/Register_transfer_level
http://en.wikipedia.org/wiki/Programmer_%28hardware%29

International Journal of Advanced Trends in Engineering and Technology (IJATET)

Impact Factor: 5.665, ISSN (Online): 2456 - 4664

(www.dvpublication.com) Volume 2, Issue 1, 2017

78

Timing Summary

Speed Grade -5 -5

Minimum period No path found No path found

Minimum input arrival time

before clock
2.637ns 2.832ns

Maximum output required

time after clock
6.141ns 10.311ns

Maximum combinational

path delay
No path found 11.195ns

11. Conclusion:

 As technology advances, the problem of soft errors is spreading widely. So, some techniques are required

which canreduce the existing soft errors and increase the performance as well as reliability of a system. The

project uses the technique of Berger combinational and sequential circuits on Xilinx FPGAfor which candetect

the soft error very efficiently and it is very less time consuming as well as cost hence the fault-tolerance,of each

module of the system must be fault-tolerant by possessing run-time (or online) fault detection capabilities.

Totally Self-checking (TSC) circuits permit online detection of hardware faults. Berger checker structure is used

to utilize less number of LUTs.

12. Acknowledgement:

 I would like to thank to Anna University, SSM College of Engineering and Dr.S.Natarajan for their

valuable support to do this project work.

12. References

1. Boudjit. M., M. Nicolaidis, and K. Torki, (1993) Automatic Generation Algorithms, Experiments and

Comparisons of Self checking PLA schemes using parity codes‟, in Proc. 4
th

 European Conference on

Design Automation, pp. 144-150.

2. Jha. N. K, and S. J. Wang, (1993), Design and Synthesis of Self-Checking VLSI Circuits‟ in IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 12, no. 6, pp. 878-

887.

3. Kavousianos. X, D. Nikolos, G. Foukarakis, T. Gnardellis (1999) „New efficient totally self-checking

Berger code checkers‟ Integration,the VLSI journal 28 pp 101-118.

4. J.C. Lo et al., (1989), „Concurrent Error Detection in Arithmetic and Logical operations using Berger

Codes‟ Proc. 9th Symp. Comput. Arithmetic, pp. 233 – 240.

5. Metra .C, “Novel Berger Code Checker,(1995),‟ IEEE Proceedings on Defect and Fault tolerance in

VLSI systems‟, pp. 287-295.

6. Natarajan Somasundaram, Jeong A Lee, Farhad Mehdipour, Ramadass Narayanadass, Y V Ramana

Rao, (2013),'Scalable Error Detection Coding©Algorithm for Totally Self-Checking (TSC) Circuits

SEDC© Algorithm for TSC Circuits‟Consumer Electronics Times, Vol. 2 Iss. 3, PP. 116-123.

7. Piestrak. S. J., (1987), „Design of Fast Self-Testing Checkers for a Class of Berger Codes‟, in IEEE

Transactions on Computers, vol. C-36, no.5, pp. 629-634.

8. PierceD.A. Jr. and P.K. Lala,(1996)„Modular Implementation of EfficientSelf Checking Checkers for

the Berger Code‟J. of Electronic Testing: Theory andApplications, pp. 279 – 294.

9. Pradhan. D. K., and J. J. Stiffler,(1980) “Error-Correcting Codes and Self-Checking Circuits”, in

Computer, vol. 13, no. 3, pp. 27-37.

10. Srinivasan,V, J. W. Farquharson, Student Member, IEEE, W. H. Robinson, Member, IEEE, B. L.

Bhuva, Senior Member, IEEE ,(2006)‟Evaluation of Error Detection Strategies for an FPGA- Based

Self-Checking Arithmetic and Logic Unit‟.

11. Stott.E, P. Sedcole, and P. Cheung, (2008),‟Fault tolerant methods for reliability in FPGAs‟, in Proc.

International Conference on Field Programmable Logic (FPL), pp.415-420.

12. Tao. D. L., P. K. Lala, and C. R. P. Hartmann, (1988)„A MOS Implementation of Totally Self-checking

Checker for the 1-out-of-3 Code‟, in IEEE Journal of Solid State Circuits, vol. 23, no. 3, pp. 875-877.

