

# ENVIRONMENTAL CHARACTERISTICS OF JUTE FIBER REINFORCED WITH E-GLASS

# B. Sudha Bindu\*, S. Ramakrishna\*\* & T. Pavan Kumar\*\*\*

Research Scholar, KL University\*, Assistant Professor, Department of Mechanical Engineering, VJIT Engineering College, Hyderabad, Karnataka

**Cite This Article:** B. Sudha Bindu, S. Ramakrishna & T. Pavan Kumar, "Environmental Characteristics of Jute Fiber Reinforced with E-Glass", International Journal of Advanced Trends in Engineering and Technology, Volume 2, Issue 2, Page

Number 194-197, 2017.

#### Abstract:

A composite is a heterogeneous material created by the synthetic assembly of two or more components constituting reinforcing matrix and a compatible matrix to obtain specific characteristics and properties. In this project we Selected jute fiber, E- Glass and it is embedded in a primary resin matrix system (Thermosetting), the task of which is to hold the fibers together, this provides and stabilizes the shape of the composite structure, transmits the shear forces between the mechanically high-quality fibers, and protects them against radiation and other aggressive media and the specimen is prepared. The component is conditioned and prepared for testing and subjected to tensile test, hardness, water absorption and temperature at 120°C to determine the characteristics of the composite. The main aim of this project is to reduce the impact on the environment, by preparing specimen using recyclable natural fibers. The resulting fibers microstructures from water absorption and exposed to temperature are studied under SEM analysis

Key Words: Jute, E-Glass, Thermosetting & Characteristics

#### 1. Introduction:

India endowed with an abundant availability of natural fiber such as Jute, Coir, Sisal, Pineapple, Ramie, Bamboo, Banana etc. has focused on the development of natural fiber composites primarily to explore value-added application avenues. Such natural fiber composites are well suited as wood substitutes in the housing and construction sector. The development of natural fiber composites in India is based on two pronged strategy of preventing depletion of forest resources as well as ensuring good economic returns for the cultivation of natural fibers. The developments in composite material after meeting the challenges of aerospace sector have cascaded down for catering to domestic and industrial applications. Composites, the wonder material with lightweight; high strength-to-weight ratio and stiffness properties have come a long way in replacing the conventional materials like metals, wood etc. The material scientists all over the world focused their attention on natural composites reinforced with Jute, Sisal, Coir, Pineapple etc. primarily to cut down the cost of raw materials.

#### 2. Experimental:

**Materials:** E-Glass(density 2.44gm/cm³, Tensile strength 2000Mpa), Jute(density 1.3gm/cm³, tensile strength 393-793Mpa), Epoxy(Density 1.44gm/cm³, tensile strength 2860-3750Mpa).

**Compounding:** Wax is applied to frame and as well as to GI sheet of 200mmx100mm with a thickness of 5mm in the ratio of 60:40 of jute and E-glass fibers alternatively. Then GI sheet is placed in the frame and resin is mixed with hardener with required proportions and adhesives are applied.

**Specimen Preparation:** The mould sample for testing were compression moulded using compression moulding at  $150^{\circ}$ c and 50mpa for 10mins. After Pressing the sheet is removed from the press and cooled by water.

# 3. Characterization Techniques:

**Tensile Strength**: Tensile Properties are evaluated according to FIE-40 and UTN-40 of universal tensile machine subjected to hot and wet conditions

**Shore Hardness**: Hardness test is carried out by ASTM D 2240:2003 of Shore Hardness Tester. A tensile test is conducted for a specimen that is subjected to temperature at 1200c for 3 days after it is subjected to water absorption for 3 days.

## 4. Results and Discussions:

Tensile, compression and hardness tests are conducted to the specimen. The results are:

#### Table 1

| Tensile Test(N) | Compression Test(N) | Shore Hardness Test(N) |  |
|-----------------|---------------------|------------------------|--|
| 1520            | 900                 | 88                     |  |

Weight: When specimens are subjected to water absorption, the jute in the matrix absorbs some water and gradually increases its weight.

Table 2: Increased weight %

| S.No  | Initial Weight | Immersion Time | Final Weight | Water absorption for |
|-------|----------------|----------------|--------------|----------------------|
| 3.110 | (Gms)          | (No. of days)  | (Gms)        | days (% of Increase) |
| 1     | 13             | 2              | 13           | 0                    |
| 2     | 13             | 3              | 13.2         | 1.5                  |

| ĺ | 3 | 13 | 4 | 13.6 | 4.6 |
|---|---|----|---|------|-----|
| Ī | 4 | 13 | 5 | 14.0 | 7.7 |
| Ī | 5 | 13 | 6 | 14   | 7.7 |

Figure 1: Graph showing immersion time with respect to % increase in water absorption

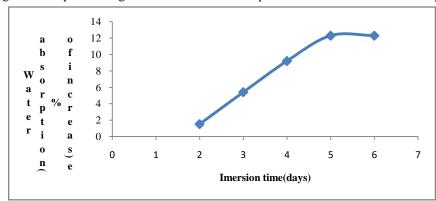



Table 3: % of weight decrease when subjected to temperature at 120°c

| racio 3. 70 or weight decrease when subjected to temperature at 120 c |                |              |              |                      |
|-----------------------------------------------------------------------|----------------|--------------|--------------|----------------------|
| S.No                                                                  | Initial Weight | No. of Davis | Final Weight | Temperature at 120°c |
| 3.110                                                                 | (Gms)          | No. of Days  | (Gms)        | (%of decrease)       |
| 1                                                                     | 13             | 2            | 12.8         | 1.5                  |
| 2                                                                     | 13             | 3            | 12.3         | 5.4                  |
| 3                                                                     | 13             | 4            | 11.8         | 9.2                  |
| 4                                                                     | 13             | 5            | 11.4         | 12.3                 |
| 5                                                                     | 13             | 6            | 11.5         | 12.3                 |

Figure 2: Graph showing No. of days with respect to % decrease in temperature

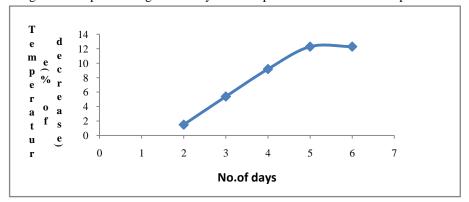
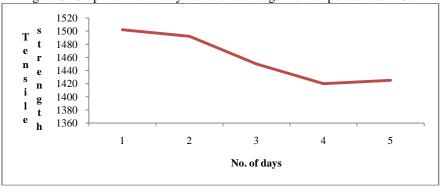




Table 4: Tensile tests before and after water absorption and hot conditions:

| Table 4: Tensile tests before and after water absorption and not conditions: |              |                          |                          |  |
|------------------------------------------------------------------------------|--------------|--------------------------|--------------------------|--|
| S.No                                                                         | Tensile Test | Tensile test after Water | Tensile test after       |  |
| 3.110                                                                        | (N)          | absorption for days (N)  | Temperature at 120°c (N) |  |
| 1                                                                            | 1520         | 1520                     | 1502                     |  |
| 2                                                                            | 1520         | 1544                     | 1492                     |  |
| 3                                                                            | 1520         | 1553                     | 1450                     |  |
| 4                                                                            | 1520         | 1566                     | 1420                     |  |
| 5                                                                            | 1520         | 1570                     | 1425                     |  |

Figure 3: Graph for no. of days to tensile strength for temperature at 120°c



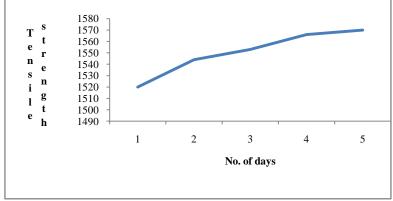



Figure 4: Graph for no. of days to tensile strength for water absorption

When the tensile test is conducted for a specimen that is subjected to temperature at 120°c for 3 days after it is subjected to water absorption for 3 days, the result is 1500N. There is no much change in the tensile strength.

## 5. Surface Morphology:

Sem Tests are conducted for water absorption and exposed to temperature at  $120^{\circ}$ c. Fibers are expanded is shown in figure 5 and loss of binding property between fibers when exposed to temperature at  $120^{\circ}$ c are shown in figure 6.

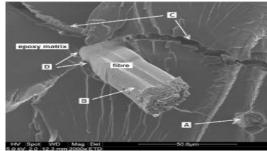



Figure 5: Water Absorption



Figure 6: Exposed to temperature at 120°c

## 6. Conclusion:

The following conclusions are drawn from the present work. There will be increase in weight when subjected to wet conditions due to presence of jute fibers. This may result in weakness of resins. There is no much weight loss when subjected to temperature at  $120^{0}$ c. When the specimen is subjected to both hot and wet conditions, there is no much difference in its weight loss. Hence it can be used in outdoor applications also.

# 7. References:

- 1. Li XH, Meng YZ, Wang SJ, Rajulu AV, Tjong SC. "Completely biodegradable composites of poly (propylene carbonate) and short, lignocellulose fabric hildegardiapopulifolia." J Polym Sci: Part B; Volume 42, (2004): p. 666–675.
- 2. Shibata M, Takachiyo K, Ozawa K, Yosomiya R, Takeishi H. "Biodegradable polyester composites reinforced with short abaca fiber." J Appl Polym Sci; Volume 85, (2002): p. 129–138.
- 3. Iannace S, Nocilla G, Nicolais L. "Biocomposites based on sea algae fibers and biodegradable thermoplastic matrices." J Appl Polym Sci; Volume 73, (1999): p. 583–92.
- 4. Shibata M, Ozawa K, Teramoto N, Yosomiya R, Takeishi H. "Biocomposites made from short abaca fiber and biodegradable polyester." Macromol Mater Eng; Volume 288, (2003): p. 35–43.
- 5. Luo S, Netravali A.N., "Interfacial and mechanical properties of environment-friendly 'green' composites made from pineapple fibers and poly (hydyoxybutyrate-co-valerate) resin." J Mater Sci; Volume 34, (1999): p. 3709–3719.
- 6. Rout J, Misra M, Tripathy SS, Nayak SK, Mohanty AK. "The influence of fiber treatment on the performance of coir-polyester composites." Compos SciTechnol; Volume 61, (2001): p. 1303–1310.
- 7. Bisanda ETN. "The effect of alkali treatment on the adhesion characteristics of sisal fibres." Appl Comp Mater; Volume 7, (2000): p. 331–339.
- 8. Gassan J, Bledzki A.K. "Possibilities for improving the mechanical properties of jute/epoxy composites by alkali treatment of fibres." Compos Sci Technol.; Volume 59, (1999): p. 1303–1309.
- 9. Usmani M. Arthur, Salyer O. Ival, Ball L. George, Schwendeman L. James, "Bagasse-Fiber-Reinforced Composites." Journal of Elastomers and Plastics, Volume 13, No. 1, (1981): p. 46-73.
- 10. Monteiro S.N.; Rodriquez R.J.S.; De Souza M.V., D'Almeida J.R.M., "Sugar Cane Bagasse Waste as Reinforcement in Low Cost Composites", Advanced performance Material, Volume 5, No.3,

International Journal of Advanced Trends in Engineering and Technology (IJATET)
Impact Factor: 5.665, ISSN (Online): 2456 - 4664
(www.dvpublication.com) Volume 2, Issue 2, 2017

- (December 1998): p. 183-191.
- 11. Vazquez A., Dominguez V. A., Kenny J. M., "Bagasse Fiber-Polypropylene Based Composites." Journal of Thermoplastic Composite Materials." Volume 12, No. 6, (1999): p. 477-497.
- 12. Hassan M.L., Rowell R.M., Fadl N.A., Yacoub S.F. and Chrisainsen A.W. "Thermo plasticization of Bagasse. I. Preparation and Characterization of Esterified Bagasse Fibers." Journal of applied polymer science, Volume 76, (2000): p. 561-574.
- 13. Hassan M.L., Rowell R.M., Fadl N.A., Yacoub S.F. and Chrisainsen A.W. "Thermo plasticization of Bagasse. II. Dimensional Stability and Mechanical Properties of Esterified Bagasse Composite." Journal of applied polymer science, Volume 76, (2000): p. 575-586.