International Journal of Advanced Trends in Engineering and Technology (IJATET)
Impact Factor: 5.665, ISSN (Online): 2456 - 4664
(www.dvpublication.com) Volume 2, Issue 2, 2017
MULTIPATH ROUTING AND DUAL LINK FAILURE
RECOVERY IN IP FAST REROUTING
M. Mohanapriya* & P. Kavitha**
Department of Computer Science, Sri Ramakrishna College of Arts and Science,
Coimbatore, Tamilnadu
Cite This Article: M. Mohanapriya & P. Kavitha, “Multipath Routing and Dual Link
Failure Recovery in IP Fast Rerouting”, International Journal of Advanced Trends in
Engineering and Technology, Volume 2, Issue 2, Page Number 164-170, 2017.

Abstract:

In this approaches for disjoint multipath routing and fast recovery in IP networks that guarantee
recovery from arbitrary two link failures. Developing the first known algorithm to construct three edge-
independent spanning trees, which has a running time complexity of 0(V?). The property of these trees is that
the paths from a source to the destination on the trees are mutually link-disjoint. We illustrate how the three
edge-independent trees rooted at a destination may be employed to achieve multipath routing and IP fast
recovery. In implement different ways of employing the trees. The routing of packets is based on the destination
address and the input interface over which the packet was received. If the trees are employed exclusively for
multipath routing, then no packet overhead is required. If the trees are employed for failure recovery, then the
overhead bits will range from 0 to 2 bits depending on the flexibility sought in routing. In this project evaluate
the performance of the trees in fast recovery by comparing the path lengths provided under single- and dual-link
failures with an earlier approach based on tunneling.

Key Words: Independent Spanning Trees, Ip Fast Reroute, Multilink Failure Recovery & Multipath Routing.
1. Introduction:

As mentioned before, multipath routing can provide a range of benefits. In the section we describe how

these benefits are achieved, and give an overview of the main elements in multipath routing protocols.

Benefits of Multipath Routing:

Fault Tolerance — Multipath routing protocols can provide fault tolerance by having redundant information
routed to the destination via alternative paths. This reduces the probability that communication is disrupted in
case of link failure. More sophisticated algorithms employ source coding to reduce the traffic overhead caused
by too much redundancy, while maintaining the same degree of reliability. This increase in route resiliency is
largely depended on metrics such as the diversity, or disjointness, of the available paths. We delay the
discussion on disjoint routes until the next section.

Load Balancing — When a link becomes over-utilised and causes congestion, multipath routing protocols can
choose to divert traffic through alternate paths to ease the burden of the congested link.

Bandwidth Aggregation — By splitting data to the same destination into multiple streams, each routed through
a different path, the effective bandwidth can be aggregated. This strategy is particular beneficial when a node
has multiple low band width links but requires a bandwidth greater than an individual link can provide. End-to-
end delay may also be reduced as a direct result of larger bandwidth.

Reduced Delay — For wireless networks employing single path on-demand routing protocols, a route failure
means that a new path discovery process needs to be initiated to find a new route. This results in a route
discovery delay. The delay is minimised in multipath routing because backup routes are identified during route
discovery.

There is a growing need for developing efficient endto- end protocols for the Future Internet,
specifically ones that can exploit multipath routing. One of the key technical challenges identified in the
following:

“The outstanding technical issue with transport-based multipath is how to distinguish flows to ensure
their routes diversify as soon as they enter the internetwork.”

Multipath routing (MPR) is an effective strategy to achieve robustness, load balancing, congestion
reduction, and low power consumption. Disjoint multipath routing provides increased security and bandwidth
compared to non disjoint multipath routing as link- or node-disjoint paths are employed. Despite the advances in
multipath routing research, the use of multipath routing in IP networks is mostly limited to equal-cost multi
paths (ECMP). Recently, some sophisticated routers offer multipath routing, however they are limited to two
kinds: 1) source-based forwarding, which provides only single-path routing for a source; and 2) forwarding port
selection on a per-packet basis, which leads to high variance in the end-to-end delay, and may lead to significant
throughput reduction for TCP traffic. Thus, we need an efficient mechanism to route traffic over multiple paths,
ideally disjoint, in order to avoid contention for bandwidth.

On the other hand, the Internet is prone to link failures on an everyday basis, be it due to planned
maintenance or unplanned outages. As the data rates increase, the amount of data lost due to temporary service
disruption increases. To ensure fast recovery from failures, the rerouting schemes must have the following
characteristics: 1) proactive recovery—whereby the backup forwarding ports are calculated a priori; 2) local

164



International Journal of Advanced Trends in Engineering and Technology (IJATET)

Impact Factor: 5.665, ISSN (Online): 2456 - 4664

(www.dvpublication.com) Volume 2, Issue 2, 2017

recovery initiated by the node next to the failed link, rather than the source; and 3) local recovery from a link
failure without the knowledge of other failures, in case of multiple link failures.

Traditional routing in Internet Protocol (IP) networks involves computing a forwarding link for each
destination referred to as the primary (preferred) forwarding link. When a packet is received at a node, it is
forwarded along the primary forwarding link corresponding to the destination address in the packet. To recover
from the failure of the primary forwarding link, a node must reroute the packet over a different link, referred to
as the backup forwarding link. The backup forwarding link at different nodes in the network must be chosen in a
consistent manner to avoid looping.

1.1 Significance of Three Edge-Independent Trees:

The implication conjecture thought to be closed in and opened up again by our work in remains an
open problem at this time. Based on our experience in developing the counterexample, it is not apparent if a
general approach to compute edge-independent spanning trees can be derived just from the corresponding
vertex-independent spanning trees without the knowledge of how the vertex-independent spanning trees were
constructed. In this paper, we provide an algorithm to construct three edge-independent spanning trees in three-
edge-connected graphs. Given that a generic algorithm for deriving edge-independent trees from vertex-
independent trees is not known as of this writing, the construction of three edge-independent trees in itself is a
significant contribution due to the applications of three edge-independent spanning trees in networks, as
explained below.

The computation of three edge-independent trees is key to deriving the fundamental results in network
tomography. Network tomography refers to the area of networking where individual link characteristics are
inferred by observing end-to-end path characteristics. For example, in we showed that three-edge connectivity is
a necessary and sufficient condition for identifying additive link metrics using measurement cycles, where all
cycles traverse a given measurement node. The polynomialtime algorithm to construct linearly independent
cycles/paths between a given set of measurement nodes relies on the construction of three edge-independent
trees rooted at the measurement node. Moreover, given that the linearly independent cycles/paths were
constructed using trees, we may completely solve for all the link metrics in linear time without having to
perform matrix inversion. In a follow-up paper, we compute the maximum achievable link rank in an arbitrary
topology and identify the set of links that result in rank deficiency. The proof of identifying links within certain
network components, again, relies on the construction of three edge-independent trees. Note that there are
several works in the literature that attempt to compute linearly independent cycles in a brute-force approach,
without having a knowledge of what is the maximum achievable link rank for a given placement of monitor
nodes. The above works provide the fundamental theoretical knowledge in network tomography, which is made
possible only through the construction of three edge-independent trees.

Problem Statement:

Multipath routing (MPR) is an effective strategy to achieve robustness, load balancing, congestion
reduction, and low power consumption. Disjoint multipath routing provides increased security and bandwidth
compared to non disjoint multipath routing as link- or node-disjoint paths are employed. The Internet is prone to
link failures on an everyday basis, be it due to planned maintenance or unplanned outages. As the data rates
increase, the amount of data lost due to temporary service disruption increases. To ensure fast recovery from
failures, the rerouting schemes must have the following characteristics: 1) proactive recovery—whereby the
backup forwarding ports are calculated a priori; 2) local recovery initiated by the node next to the failed link,
rather than the source; and 3) local recovery from a link failure without the knowledge of other failures, in case
of multiple link failures. Traditional routing in Internet Protocol (IP) networks involves computing a forwarding
link for each destination, referred to as the primary (preferred) forwarding link. When a packet is received at a
node, it is forwarded along the primary forwarding link corresponding to the destination address in the packet.
To recover from the failure of the primary forwarding link, a node must reroute the packet over a different link,
referred to as the backup forwarding link. The backup forwarding link at different nodes in the network must be
chosen in a consistent manner to avoid looping.

2. Related Works:
2.1 Expansion to a Cubic Graph:

This step is to transform the given graph into a three-vertex connected graph. The expansion to a cubic
graph, where every vertex in the graph has degree three, makes it easier to understand the construction
procedure and facilitates the computation of the edge-independent trees, which will be evident in Section I1V-E.
Any graph where vertices have degree greater than three may be expanded to a cubic graph in a trivial manner.
However, the expansion procedure must also guarantee that the cubic graph is three-vertex-connected in order to
be able to construct the sequence of paths with special properties (as outlined above in Step 2). We achieve this
by iteratively expanding every node in the original graph into a set of nodes that have degree three, while
retaining the three-edge connectivity of the network. We finally show that a three-edge-connected cubic graph is
also three-vertex-connected (see Lemma 1 in the Appendix).

165



International Journal of Advanced Trends in Engineering and Technology (IJATET)

Impact Factor: 5.665, ISSN (Online): 2456 - 4664

(www.dvpublication.com) Volume 2, Issue 2, 2017

Fig. 3 shows the procedure to expand a given 3E-2V graph into a three-vertex-connected cubic graph.

The algorithm works by expanding a vertex with degree into subvertices, denoted by through. The subvertices

are internally connected as a path using additional edges. The edges connected to vertex are spread across the

vertices such that subvertices and have two edges connected to them, while all other subvertices have exactly

one edge connected to them. The choice of edges to be connected to vertices and are based on the connectivity

of the graph in the absence of vertex.

Consider an intermediate stage of the graph where some vertices may have already been expanded.

Call this graph. Assume that is three-edge-connected and there exists a vertex with degree higher than three. We

now expand vertex. The algorithm works by removing the vertex and all the edges connected to it. The resultant

graph is then divided into two-edge-connected (2E) components. Observe that the graph formed by the 2E-

components is one-edge-connected. If the resultant graph has only one 2E component, then it must have at least
three edges connecting the component to the  ppocedure Cubic Expansion

vertex. These edges may be distributed to

the subvertices in any manner as long as

each subvertex has degree exactly three. If

1) For every vertex n. whose degree d is more than three, do:

a) Remove vertex n and all the edges connected to it. Let
the resultant graph be Gin: \ {n}

the resultant graph has more than one 2E- b) Sub-divide the vertex into d — 2 sub-vertices, denoted
component, then every leaf Compqnent6 by n1 through ng—2. Connect vertex n; to n;+1, where
must have at least two edges connecting to i=1.92 . d—3.

vertex. In addition, every component that is ¢) Divide Gin¢ \ {n} into 2E-components.

connected to exactly two other components d) If Gint \ {n} has only one 2E-component, then assign
must have at least one edge connected to the edges connecting this component to n arbitrarily such
vertex. We select two leaf components, say that; vertices n; and ng—» have two edges connected,
and. From each of these two leaf while all other sub-vertices have one edge connected.
components, we select two edges. We attach ¢) If Gint \ {n} has more than one 2E-component,

the first edge from to and the second edge i) Select two arbitrary leaf components, say C; and Cb.
from to We repeat this for. Thus, vertices Select two edges from each of these leaf components.
and have exactly degree three, and the two Connect these edges to sub-vertices n1 and ng—»
selected leaf components, and, have one such that one edge from each of these two compo-
edge attached to each and. Any remaining _ nents is connec[ed'to_ each n; and similarly to ng_s.
edges connecting to may be assigned to the ii) Connect any remaining edges from any of the com-

ponents to n in any order such that the degree of

subvertices in an arbitrary order provided h
every sub-vertex is exactly three.

each subvertex has degree exactly three.

Algorithm to expand a given three-edge- and two-vertex-
connected graph into a three-edge-connected cubic graph
2.2 Constructing Augmenting Cycles/Paths:

Given a three-connected cubic graph and a root vertex, we decompose the network into a sequence of
paths. The first path is a cycle that starts and ends at vertex. Every other path starts and ends at distinct vertices.
The cycle and the paths satisfy the following properties.

1) The removal of vertices in the path keeps every other vertex not added in this path or earlier paths
connected with each other.

2) Every vertex in the path is connected to at . .
least one \Zertex }t/hat is not addeg to this path or earlier 1) Selectanarbitrary neighbor of 7, say u. Remove the edge r-u.
paths. The first condition implies the nonseparating 2) Compute a cycle starting and ending at r and avoiding u such

nature of the path. The second condition may be met in that: (1) the removal of the cycle keeps every other vertex not
several ways. The algorithm in [22] simply in the cycle connected to u; and (2) every vertex in the cycle
decomposes the network into a sequence of has one neighbor that is not added to the cycle.

nonseparating cycle and paths that also satisfy the 3)i=0.

second property above in a SPECiﬁC manner.7 For the 4) If j=i P does not include all vertices in v* do:
. Uj:o ] y WU
sake of completeness and ease of understandlng of the

rest of the paper, we briefly discuss the path B ieitl. D . .
augmentation technique employed by [22] to construct b) Compute a path F; avoildmg u, ie (1) o veriex n
three vertex-independent trees rooted at , but tailored to the path P; has one neighbor in Q \ Uj:O P;;and (2)
Fhe cubic graph expansion. This is shown in Fig. 5. Itis every vertex in Q\U{f; P; remains connected to .
important to note that we are not interested in ¢ Repeal i=

computing three vertex-independent trees. We obtain
the cycle and paths from [22] and modify these paths to ~ 3) Stop.
obtain cycle/paths in the original graph.

Figure outlines the steps involved in the path augmentation procedure. We identify any arbitrary
neighbor of, say, and remove the edge - . We then decompose this graph into a sequential ordering of paths. The
first path is a cycle as it will start and end at. At every stage, the path starts and ends at two distinct vertices that

166



International Journal of Advanced Trends in Engineering and Technology (IJATET)
Impact Factor: 5.665, ISSN (Online): 2456 - 4664
(www.dvpublication.com) Volume 2, Issue 2, 2017
are already part of some earlier paths and traverses at least one new vertex. The last path augmented will have as
the only new vertex added.
3. Challenges and Contributions:
3.1 Multipath Evaluation:

We now evaluate the performance of the three link-independent trees when employed for multipath
routing in addition to being used for fast recovery from arbitrary dual-link failures. To evaluate our scheme, we
benchmark it against the popular technique ECMP. For the simulation, we build a shortest directed acyclic
graph (DAG) rooted at each destination. Every node has one (or more) forwarding neighbors on the ECMP
DAG and splits both the incoming traffic and the traffic that it is sourcing uniformly among these equal-cost
next-hops. For the traffic model, we assume that every node in the network sends 1 unit of traffic to every other
node. For the three link-independent trees, traffic is equally divided among the three trees by the source node. At
intermediate nodes, incoming traffic on a particular tree is forwarded along the same tree.

With the simulation setup described above, we now evaluate the traffic carried by every directed link in
the network in the topologies considered. 14 shows the histograms of link loads for different networks. The links
are ordered (in descending order) based on the traffic carried by them when ECMP is employed. We observe
that links typically carry more traffic with independent trees compared to ECMP. This is not surprising as the
three-trees approach provides disjoint paths for all nodes at the expense of longer path lengths compared to
ECMP. In all these networks, the total bandwidth carried in the network is approximately 70% more than that
with ECMP.

When we consider traffic for a specific destination (or in scenarios of having skewed or partial traffic
matrices), the distribution of traffic on the links could be quite different. Shows the ordered link loads for
destination node 1 in the ARPANET network. As we see in this example, the maximum load carried by a link in
ECMP could be higher than that with independent trees.11 since the path lengths using the three trees are longer
than the shortest path, most links carry higher traffic when compared to ECMP.

To the best of our knowledge, the edge-independent spanning tree is the only scheme that can achieve
both multipath routing and fault tolerance from arbitrary dual-link failures simultaneously. Another aspect
where the fully disjoint paths come in handy is against intrusion detection since any compromised link would
only be seeing one third of the traffic from any given source in the network. Contrast this with ECMP where
there is no guarantee of disjointedness12 of the paths from a source to a destination node.

3.2 Forwarding Tree Selection in a Protection Graph:

Consider a packet destined to node d with address dO encounters a failure at node X, where the default
forwarding link x—y. Node x stacks a new header to the packet with the destination address as yg. The packet
may now be transferred either along the red or blue tree. There are two approaches to select the default tree over
which the packet is routed.

The first approach is referred to as the red tree first (RTF), where every packet is forwarded along the
red tree. Upon failure of a red forwarding link in the protection graph, the packet will be forwarded along the
blue tree. When a blue forwarding link fails, the packet is simply dropped as it indicates that the packet has
already experienced two link failuresl.

The second approach is referred to as the shortest tree first (STF), where a packet is forwarded along
that tree which provides the shortest path to the root of the tree. As the packets are first forwarded on the
shortest tree, the packets experience lower delays under single link failure scenarios. While the red tree may
offer the shortest path for node x in the protection graph Gyg, the blue tree may offer the shortest path for
another node x0 in the same protection graph, where x; x0 2 Nyg. A packet that is forwarded on the red (blue)
tree will be re-routed to the blue (red) tree upon a red (blue) forwarding link failure. The limitation of this
approach is that it may result in perennial looping if more than two links fail in the network. Unlike the RTF
approach, where a packet to be forwarded on the blue link implies that it has already experienced two link
failures, the STF approach does not provide any implicit indication on the number of failures experienced by the
packet. We will employ an additional bit that denotes the number of failures the packet has encountered in a
protection graph. When forwarded on the shortest-path tree, the bit is set to 0. Upon the failure of the forwarding
link on the first tree, the packet is forwarded on the other tree with the bit set to 1. Upon failure of a forwarding
link in the protection graph, a packet is dropped if the bit is set to 1.

3.3 Forwarding Search Token:

A node that has the path search token attempts to augment a path through each of its neighbor. The
node then forwards the token to those eligible neighbors, traversing the ordered list in the reverse direction
(opposite to the order in which the SEARCH messages were initiated), one at a time. An eligible neighbor is one
for which the variable flag new node added is set to true. Such an order reversal for passing the token helps
maintain a consistent global ordering in a distributed manner across all the nodes in the network. A node that
receives a TOKEN changes its state from CYCLE to TOKEN, starts the path search along each of its neighbors,
and forwards the token to its eligible neighbors.

167



International Journal of Advanced Trends in Engineering and Technology (IJATET)
Impact Factor: 5.665, ISSN (Online): 2456 - 4664
(www.dvpublication.com) Volume 2, Issue 2, 2017
Once the tokens are returned by all neighbors, the node sets its state to FINISH and returns the token to
the node from which it first received the token. The token finally reaches the drain, indicating that all nodes in
the network are in the FINISH state, at which point the algorithm terminates.
4. Methodology Overview:
4.1 Dataset and Experiment Setups:
Theorem 1: The expansion procedure retains the three-edge connectivity property of the graph and eventually
results in a three-vertex-connected graph.
Proof: Note that as the original graph is two-vertex-connected, removal of vertex keeps connected. After an
expansion at any stage, the graph still retains the 2V property. This can be checked by seeing that the removal of
any vertex keeps the graph connected. Thus, it is sufficient to show that the algorithm retains three-edge
connectivity at every vertex expansion stage. We show that after every vertex expansion, the removal of any
edge will still leave the graph two-edge-connected. We define a property called overlap on the edges connected
to the expanded vertices of n. Consider only the leaf components

in Gy \{n}. Divide these components into two arbitrary groups,
say Dy and Dy. The smallest ndex of the expanded vertex n

that D; 15 connected fo is referred as min; and the largest index Before n is expanded. we have a 3E-2V connected graph. Any
of the expanded vertex n that D; 1s connected to is efemed as vertex v in C; has three link-disjoint paths to n. Now temoval
ma;. We define the interval of connection of the two groups of £ in C; can affect at most one of these three disjoint paths.
25 (ming, maxxy) and (miny, maxy). We say that Dy and Dy Hence, v still has at least two edge-disjoint paths o n. There-
overla 1fthese two intervals overlap (or one is completely con- fore, v has two edge-disjoint paths to-nny n; affer expansion
tained it the other). If the two infervals are disjoint, then we say since ny tong_ i a chiain of newly added edges. This argument
that the two groups do not overlap. may beused for any vertex in Gy \ {n}\ {1}. Since the existence

Let T, denote the edges that comnect two subvertices of n. of edge-disjoint paths is transitive, there are two edge-disjoint
Consider a edge £. We have two possible scenarios: 1) £ ¢ I, pahs between any two vertices, and hence the graph remains
or 2) £ € Z,,. In both scenarios, we show that the graph after two-edge-connected.

edge removal is two-edge-connected.
Case I: Sinceedge £ ¢ Z,,, we consider three subcases. First,
let £ be within one of the two-edge-connected components C;.

4.2 Implementation:

The implement the randomly directed exploration protocol on the same simulation framework as the
previous protocol. Since the randomly directed exploration protocol relies on a local network topology, the
random graph model cannot server for its simulations. Instead, the take the unit-disk graph as the sole network
scenario. The choose a constant node degree and select as the priority range of the protocol. As a result, there
are an average 2.5 neighbors in the priority zone of a node.

Module Description:

User: We design a dynamic peer to peer topology. Peers are interconnected and pass the data directly with each
other peers by using maintain the connection details in dht. Peers have connection with other peers. Distributed
hash table (dht) has peer details like peer name, ip address, port number and link specification. User enters to the
network at the time all details of peer register into dht.

Link Calculation: Sender sends the data to receiver through intermediate peers. First sender peer collect the
available peer details and calculate available paths between senders to receiver. Among that available paths
sender calculate the shortest path for data transmission. And also determine node failure details.

Vertex Conjecture: Vertex Conjecture algorithm started to reconfiguration process when node failure make
disjoint problem. Disjoint is nothing but one node split from network without its knowledge. That means one
node suffers due to someone relive from network. At that time dht use this algorithm and calculate most in
degree node in the network and connect this suffering node with most in degree node.

Data Transmission: All receiving packets are store in to the buffer and reorder the packets. Receiver receives
the packets with secure manner. Data show using message receive box. Data are received by different path in
different transaction of sender to receiver. Receiver also does not know about the route of the each data
transaction. It makes more security for packets

7.2.1 Experiments:

A. Complexity Analysis:

Computing a minimally three-edge connected graph may be achieved in two steps. First, we compute a
three-edge-connected sparse spanning subgraph of [33]. The number of edges in the sparse graph is guaranteed
to be at most. Second, we reduce the sparse spanning subgraph to a minimally three-edge-connected graph. We
consider one edge at a time and check if the edge may be removed without affecting the three-edge connectivity

168



International Journal of Advanced Trends in Engineering and Technology (IJATET)

Impact Factor: 5.665, ISSN (Online): 2456 - 4664

(www.dvpublication.com) Volume 2, Issue 2, 2017

of the spanning subgraph, which may be achieved in time for every edge. As the number of edges in the sparse
subgraph is the minimally three -edge-connected graph is obtalned in time.

Arpanet - multipath routing
WShortest path DAGs

Nsfnet - multipath routing
OThree link independent trees

WShortest path DAGs ~ OThree link independent trees
0

i “ ' 1|WWMWWWWWhu.m

1 5 9 13 17 21 25 29 33 37 41 45 1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61
Link (directed) id Link (directed) id

(a)
Nodel6 - mulupath rmu ng
WShortest path DAGS ndependent trees 25 Mesh4x4 - multipath routing
Wshortest path DAGs ~ OThree link independent trees

T

15 9 13 17 21 25 29 33 37 41 45 1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61
Link (directed) id Link (directed) id

Traffic carried by link
5 - 8

Traffic carried by link
= oNoN W
a8 L 8

s

5
o

© G)]
Traffic carried by each directed link in the networks (a) NSFNET, (b) ARPANET, (c) Nodel6, and (d) Mesh 4 4
under the two different multipath routing schemes.

The complexity of the cubic expansion procedure is . For every vertex, we compute the depth-first-
search (DFS) numbering after removing the vertex to identify the two-edge-connected components. DFS
numbering has a complexity , which is performed for every vertex. Note that the number of edges in a
minimally three-edge-connected graph is linear in the number of vertices, hence the complexity is only o(v).

The complexity of constructing the paths 1 @ s
O(V*E*) [22]. The mumber of edges in Q s inear (3/2)
in the number of vertices, hence the cmnplexny is O(V*)

The number of vertices in the cubic graph V* is bounded by
(V+ (3V — 6)) by virtue of the cubic expansion procedure
on the minimally fhree-edge-connected graph. Hence, the
complexity of computing the paths in @ 15 O(V*).

Our procedure o segment the paths only consists of
fraversing each edge in the paths in Q one af a time. Hence,
if takes only O(E*). Using the discussion above, this fakes
o).

Therefore, the overall time complexity o compute
three-edge-independent spamming trees is O(V?).

S$:B-C-G-F-B
S9:G-H-K-A-F
S:A-E-K
S3:E-D-H

Conclusion and Feature Works:

We have provided an algorithm to construct three edge-independent spanning trees. This partially
answers an outstanding problem in graph theory and also has several applications in networking and
tomography. It remains to be seen if we can generate ideas that will work for arbitrary edge connectivity or will
settle the implication conjecture on independent spanning trees. Based on our experience in developing the
algorithm for this paper, it is not apparent if a general approach to compute edge-independent spanning trees can
be derived just from the corresponding vertex-independent spanning trees, without the knowledge of how the
vertex-independent spanning trees were constructed.

We show how the three edge-independent trees can be used for routing in an IP network. We develop a
routing scheme that is capable of disjoint multipath routing using only the destination address in the packet
header. We also develop three routing approaches using the trees such that the routing table entries are limited to
at most four per node and very minimal packet overhead. All of the routing schemes developed are guaranteed
to withstand any arbitrary two-link failures in the network. Through simulations, we show that the path lengths
obtained by using the three trees is close to that obtained with the tunneling approach, even though the latter
employs seven routing table entries per node and does not provide multipath routing capability.

Keeping backup configurations in the network makes protection of multicast traffic much easier.
Protecting multicast traffic from node failures is a challenging task, since state information for a whole multicast

169



International Journal of Advanced Trends in Engineering and Technology (IJATET)
Impact Factor: 5.665, ISSN (Online): 2456 - 4664
(www.dvpublication.com) Volume 2, Issue 2, 2017

subtree is lost. By maintaining a separate multicast tree in each backup configuration, we believe that very fast
recovery from both link and node failures can be achieved.
References:

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

Gopalan and S. Ramasubramanian, “Multipath routing and dual link failure recovery in IP networks
using three link-independent trees,” in Proc. IEEE Int. Conf. Adv. Netw. Telecommun. Syst.,
Bengaluru, India, Dec. 2011, pp. 1-6.

J. Arkko, B. Briscoe, L. Eggert, A. Feldmann, and M. Handley, “Dagstuhl perspectives workshop on
end-to-end protocols for the future internet,” Comput. Commun. Rev., vol. 39, no. 2, pp. 42-47, Apr.
20009.

Cisco, “Cisco express forwarding,” 2006 [Online]. Available: http://www.cisco.com/c/en/us/support
/docs/routers/12000-series-routers/47321-ciscoef.html

G. Iannaccone, C. N. Chuah, R. Mortier, S. Bhattacharyya, and C. Diot, “Analysis of link failures in an
IP backbone,” in Proc. ACM Internet Meas. Workshop, 2002, pp. 237-242.

A. Ttai and M. Rodeh, “The multi-tree approach to reliability in distributed networks,” in Proc. IEEE
Symp. Found. Comput. Sci., 1984, pp. 137-147.

W. Zhang, G. Xue, J. Tang, and K. Thulasiraman, “Linear time construction of redundant trees for
recovery schemes enhancing QoP and QoS,” in Proc. IEEE Infocom, Miami, FL, USA, Mar. 2005, pp.
2702-2710.

S. Ramasubramanian, M. Harkara, and M. Krunz, “Linear time distributed construction of colored trees
for disjoint multipath routing,” Comput. Netw., vol. 51, no. 10, pp. 28542866, Jul. 2007.

P. Thulasiraman, S. Ramasubramanian, and M. Krunz, “Disjoint multipath routing in dual homing
networks using colored trees,” in Proc. IEEE Globecom Wireless Ad Hoc Sensor Netw. Symp., San
Francisco, CA, USA, Nov.-Dec. 2006, pp. 1-5.

P. Thulasiraman, S. Ramasubramanian, and M. Krunz, “Disjoint multipath routing to two distinct
drains in a multi-drain sensor network,” in Proc. IEEE INFOCOM, Anchorage, AK, USA, May 2007,
pp. 643-651.

A. Iselt, A. Kirstadter, A. Pardigon, and T. Schwabe, “Resilient routing using ECMP and MPLS,” in
Proc. HPSR, Phoenix, AZ, USA, Apr. 2004, pp. 345-349.

Reichert, Y. Glickmann, and T. Magedanz, “Two routing algorithms for failure protection in IP
networks,” in Proc. 10th IEEE ISCC, June 2005, pp. 97-102.

M. Shand and S. Bryant, “IP fast reroute framework,” IETF Internet Draft draft-ietf-rtgwg-ipfrr-
framework-08.txt, Feb. 2008.

Kvalbein, A. F. Hansen, T. Ci¢i¢, S. Gjessing, and O. Lysne, “Fast IP network recovery using multiple
routing configurations,” in Proc. IEEE Infocom, Apr. 2006, pp. 1-11.

F. Hansen, O. Lysne, T. Ci¢i¢, and S. Gjessing, “Fast proactive recovery from concurrent failures,” in
Proc. IEEE ICC, Jun. 2007, pp. 115-122.

S. Lee, Y. Yu, S. Nelakuditi, Z.-L. Zhang, and C.-N. Chuah, “Proactive vs. reactive approaches to
failure resilient routing,” in Proc. IEEE INFOCOM, Mar. 2004, pp. 176-186.

J. Wang, Z. Zhong, and S. Nelakuditi, “Cam05-4: Handling multiple network failures through interface
specific forwarding,” in Proc. IEEE GLOBECOM, Nov. 2006, pp. 1-6.

S. Bryant, M. Shand, and S. Previdi, “IP fast reroute using not-via addresses,” Internet Draft draft-ietf-
rtgwg-ipfrr-notvia-addresses-02.txt, Feb. 2008.

A. Li, P. Francois, and X. Yang, “On improving the efficiency and manageability of NotVia,” in Proc.
ACM CoNEXT, 2007, Art. no. 26.

S. Kini, S. Ramasubramanian, A. Kvalbein, and A. Hansen, “Fast recovery from dual link failures in IP
networks,” in Proc. IEEE INFOCOM, 2009, pp. 1368-1376.

K. Xi and J. Chao, “IP fast rerouting for single-link/node failure recovery,” in Proc. Broadnets—
Internet Technol. Symp., Sep. 2007, pp. 142-151.

A. Zehavi and A. Itai, “Three tree-paths,” J. Graph Theory, vol. 13, no. 2, pp. 175-188, 1989.

J. Cheriyan and S. N. Maheshwari, “Finding nonseparating induced cycles and independent spanning
trees in 3-connected graphs,” J. Algor., vol. 9, no. 4, pp. 507-537, 1988.

170



