ON γ- CONNECTEDNESS IN L-TOPOLOGICAL SPACES P. Senthil Kumar* & S. Sangeetha**

- * Assistant Professor, Department of Mathematics, Raja Serfoji Government College, Thaniavur, Tamilnadu
- ** Research Scholar, Department of Mathematics, Raja Serfoji Government College, Thanjavur, Tamilnadu

Cite This Article: P. Senthil Kumar & S. Sangeetha, "On γ - Connectedness in L-Topological Spaces", International Journal of Advanced Trends in Engineering and Technology, Volume 3, Issue 1, Page Number 168-170, 2018.

Abstract:

In this paper, a certain new connectedness of L-fuzzy subsets in L-topological spaces is introduce and study by means of γ - closed sets. It preserves some fundamental properties of connected set in general topology. Especially the famous K. Fan's Theorem holds.

1. Introduction:

Connectivity is one of the important notions in general topology, There have been many works about connectedness in L-topological spaces (see [1, 2, 3, 6, 8, 9, 10, 11, 12, 13, 14 etc]. In this paper, we introduce a certain new connectedness in L-topological spaces by means of γ -closed sets, which is called γ –connectedness. The γ – connectedness preserves some fundamental properties of connected sets in general topology. Especially the famous K-Fan's Theorem holds for γ -connectedness.

2. Preliminaries:

Definition 2.1: [7] Let (X,τ) be an L-topological space, $A ∈ L^X$ Then A is called an γ -open set if A ≤ Int (Cl(A))VCl(Int(A)). The complement of an γ -open set is called an γ -closed set. Also, $\gamma O(L^X)$ and $\gamma C(L^X)$ will always denote the family of all γ -open sets and γ -closed sets respectively. Obviously, $A ∈ \gamma O(L^X)$ if, and only if $A ∶ ∈ \gamma O(L^X)$.

Definition 2.2: [7] Let (L^X, τ) be an L-topological space, $A,B \in L^X$. Let $\gamma Int(A) = v\{\beta \in L^X \setminus \beta \le A, B \in \gamma O(L^X)\}$, $\gamma Cl(A) = \bigwedge \{\beta \in L^X \setminus A \le B, B \in \gamma C(L^X)\}$. Then $\gamma Int(A)$ and $\gamma Cl(A)$ are called the γ -interior and γ -closure of A respectively.

Definition 2.3: Two L-fuzzy sets A,B of an L-topological space(X,τ) are called γ -separated if $\gamma Cl(A) \land (B) = A \land \gamma Cl(B) = \underline{0}$.

Definition 2.4: In an L-topological space (X,τ) , an L-fuzzy set D is called γ - connected if D cannot be represented as a union of two γ - separated nonnull sets.

Definition 2.5: For two L-topological spaces (X,τ) and (Y,σ) , a mapping $f:X\to Y$ is called an γ -irresolute mapping if $f^{\leftarrow}(B)$ is γ -closed in (X,τ) for each γ -closed set B in (Y,σ) .

Lemma 2.6: [12] Let $A,B \in L^X$ and $A \leq B$. If $1 \in M(L)$, then $A'VB \neq 1$.

Lemma 2.7: [3] In a L-topological space (X,τ) , an L-fuzzy set D is called connected if there does not exist closed sets A, B such that DA, DB, D' \leq A,D \leq B, D'VAVB= $\underline{0}$.D \wedge A \wedge B = $\underline{0}$.

3. y-Connectedness of L-Fuzzy Sets:

Definition 3.1: Let (X,τ) be an L-topological space, $D \in L^x$. D is called γ -connected if there does not exist γ -closed sets A,B such that $D' \not\leftarrow A, D \not\leftarrow B$, $D'VAVB=1.D \land A \land B=0$.

Example 3.2: Let $X_1 \cap X_2 = \emptyset$, $X = X_1 \cup X_2$, L = [0,1]. Defined fuzzy set $(C_\alpha, C_b) \in [0,1]^x$ as follows:

$$(C_{\alpha},C_{b}) (x) = \begin{cases} a & \text{if } x \in X_{1}; \\ a & \text{if } x \in X_{2}; \end{cases}$$

Take $\beta = \{(C_{0.4}, C_1), (C_1, C_{0.4}), (C_{0.5}, C_0), (C_{0.7}, C_0), (C_0, C_{0.7})\}$

Let δ be a [0,1] –topology generated by β on X. Now we prove that $(C_{0.5},C_0)$ m is γ - connected. In fact, suppose that $(C_{0.5},C_{0.5})$ is γ -connected. In fact, suppose that $(C_{0.5},C_{0.5})$ is not γ - connected. Then there exist two γ - closed sets A,B such that $(C_{0.5},C_{0.5})$ $\leq A$, $(C_{0.5},C_{0.5})$ $\leq B$, $(C_{0.5},C_{0.5})$ 'vAvB= $\underline{1}$, $(C_{0.5},C_{0.5}) \land A \land B$ = $\underline{0}$. This implies that

International Journal of Advanced Trends in Engineering and Technology (IJATET)
Impact Factor: 5.965, ISSN (Online): 2456 - 4664
(www.dvpublication.com) Volume 3, Issue 1, 2018

 $(C_{0.5},C_{0.5}) \leq A$, $(C_{0.5},C_{0.5}) \leq B = \underline{1}$, $A \wedge B = \underline{0}$. Obviously A(or B) satisfying $A \wedge B = \underline{0}$, must be in (C_{α},C_{0}) , $(C_{0},C_{\alpha})|$ $\alpha \in [0.6, 0.7]$. But any two γ -closed sets in $\{(C_{\alpha},C_{0}), (C_{0},C_{\alpha})| \alpha \in [0.6, 0.7]\}$ does not satisfy $AVB = \underline{1}$. Therefore $(C_{0.5},C_{0.5})$ is γ -connected.

Theorem 3.3: Let (X,τ) be an L-topological space, $D \in L^x$. If $1 \in M(L)$ then the following conditions are equivalent.

- (1) D is γ connected.
- (2) There does not exist γ -closed sets A, B such that $D \land A \neq 0$, $D \land B \neq 0$, $D \lor VAVB=1$. $D \land A \land B=0$.
- (3) There does not exist γ -open sets, U, V such that $D \leq U$, $D \leq V$ D' $vUvU = \underline{1}$, $D \wedge U \wedge V = \underline{0}$.
- (4) There does not exist γ -open sets, U, V such that $D \wedge U \neq 0$, $D \wedge V \neq \underline{0}$, D'VUVV=1. $D \wedge U \wedge B=0$.

Proof: (1) \Rightarrow (2) . Suppose that there exist γ -closed sets A and B such that $D \land A \neq 0$, $D \land B \neq 0$, $D \land A \lor B = \underline{1}$. D $\land A \land B = \underline{0}$. Then obviously we have that $D \lor A \lor B = \underline{1}$. D $\land A \land B = \underline{0}$, In this case, we can prove that $D \not \leq A$, $D \not \leq B$. In fact, if $D \leq A$, then $D \land A \land B = D \land B = 0$.

(2) \Rightarrow (3) .Suppose that there exits γ -open sets U and V such that $D \not\leq U$, $D \not\leq V$, $D'vUvV = \underline{1}$, $D \wedge U \wedge V = \underline{0}$. Put A = U', B = V' Obviously we have $D'vAvB = \underline{1}$, $D \wedge A \wedge B = \underline{0}$. In this case, we can prove that $D \wedge A \neq \underline{0}$, $D \wedge B \neq \underline{0}$. In fact, if $D \wedge A = \underline{0}$, then $D'vU = D'vA' = \underline{1}$, hence by Lemma 2.6 we obtain that $D \leq U$, which contradicts $D \not\leq U$.

- $(3) \Rightarrow (4)$ is analogous to $(1) \Rightarrow (2)$
- $(4) \Rightarrow (1)$ is analogous to $(2) \Rightarrow (3)$.

Theorem 3.4: Let D be an γ -connected set in (X,τ) . If $D \le E \le \gamma Cl(D)$, then E is also an γ -connected set.

Proof: Suppose that E is not γ -connected. Then there exist two γ -closed sets A and B such that $E \leq A, E \leq B$, $E'VAVB=\underline{1}$. $E \wedge A \wedge B = \underline{0}$. Hence $D'vAvB=\underline{0}$, $D \wedge A \wedge B = \underline{0}$. In fact, we also have that $D \leq A, D \leq B$ (If $D \leq A$, then $E \leq \gamma Cl(D) \leq A$, which contradicts $E \leq A$). This shows that D is not γ -connected in (X,τ) , which contradicts that D is γ - connected. Therefore E is γ -connected.

Lemma 3.5: Let (X,τ) be an L-topological space and D,E \in L^X. Then D,E are γ -separated if, and only if there exists two γ - closed set A,V such that D \leq A,E \leq B and (DVE) \wedge A \wedge B=0.

Proof: If there exist two γ -closed sets A,B such that D \leq A,E \leq B and (DVE) \wedge A \wedge B=0, then we have that (D $\wedge\gamma$ Cl(E))V (γ Cl(D) \wedge E) \leq (D \wedge B)v(E \wedge A)=0. This shows that D,E are γ -separated. Conversely, if D, E and γ -separated, then (D $\wedge\gamma$ Cl(E))V (γ Cl(D) \wedge E)=0. Take A= γ Cl(D) and B= γ Cl(E). Then (DVE) \wedge A \wedge B =(DVE) \wedge (γ Cl(D) \wedge γ Cl(E)=D $\wedge\gamma$ Cl(E))V γ Cl(D) \wedge E)=0.

Theorem 3.6: Let D and E be two γ - connected L-fuzzy sets in an L-topological space (X,τ) . If D and E are γ -separated, then DVE is γ -connected.

Proof: Suppose that DVE is not γ –connected. Then there exist two γ - closed sets A and B such that DVE $\underline{<}$ A, DVE $\underline{<}$ B. (DVE)'VAVB= $\underline{1}$. (DVE) \wedge A \wedge B= $\underline{0}$. Hence we have that D'VAVB= $\underline{1}$, D \wedge A \wedge B= $\underline{0}$, E'vAvB= $\underline{1}$. E \wedge A \wedge B= $\underline{0}$. By DVE $\underline{<}$ A. We have that D $\underline{<}$ A or E $\underline{<}$ A. Suppose that D $\underline{<}$ A. Then we must have that D $\underline{<}$ B Since D is γ -connected. Further by DVE $\underline{<}$ B we obtain that E $\underline{<}$ B. In this case it follows that $\underline{<}$ A. Therefore by (DVE) \wedge A \wedge B= $\underline{0}$ and Lemma 3.5 we know that D,E are γ -separated, which contradicts that D,E are not γ -separated. The proof is completed.

Theorem 3.7: Let $\{Dt \mid t \in \Omega\}$ be a family of γ -connected L-fuzzy sets. If $\bigwedge_{t \in \Omega} D_t \neq \underline{0}$, then $\bigvee_{t \in \Omega} D_t$ is γ -connected.

Theorem 3.9: Let $f:(X,\iota)\to (Y,\sigma)$ be an γ -irresolute mapping. If D is γ -connected in (X,ι) , then so is f(D) in (Y,ι) .

Proof: Suppose that f(D) is not γ -connected in (Y,σ) . Then there exit two γ -closed sets A,B in (Y,σ) such that $f(D) \not = A, f(D) \not = B$, $f(D) \lor A \lor B = \underline{1}$, $f(D) \land A \land B = \underline{0}$. Thus by $D \subseteq f^{\leftarrow}(f(D))$ or $D' \subseteq f^{\leftarrow}(f(D))'$ we have that $D \not = f^{\leftarrow}(A)$, $D \not = f^{\leftarrow}(B)$, $D' \lor f^{\leftarrow}(A) \lor f^{\leftarrow}(A) \lor f^{\leftarrow}(A) \land D \not = f^{\leftarrow}(B)$. Since f is γ -irresolute mapping, $f^{\leftarrow}(A)$ and $f^{\leftarrow}(B)$ are γ -closed set in (X,ι) . This slows that D is not γ -connected in (X,ι) which contradicts that D is γ -connected. Therefore f(D) is γ -connected in (Y,σ) .

Theorem 3.10: Let (X,ι) be an L-topological space and $D \subseteq L^X$. Then D is $-\gamma$ -connected if, and only if for any tow co-prime elements $a,b \le D$, there exits and γ -connected set E such that $a,b \le E \le D$.

Proof: The necessity is obvious. Now we prove the sufficiency, suppose that D is not γ -connected in (X,ι) . Then there exist two γ -closed sets A,B in (X,ι) such that $D\underline{<}A$, $D\underline{<}B$, $D'vAvB=\underline{1}$, $D\land A\land B=\underline{0}$. Take two coprime elements $a,b\leq D$ such that $a\underline{<}A$ and $b\underline{<}B$. Let E be an γ -connected set satisfying $a,b\leq E\leq D$. We have that $E\underline{<}A$, $E\underline{<}B$, $E'vAvB=\underline{1}$, $E\land A\land B=\underline{0}$. This shows that E is not γ -connected in (X,ι) a contradiction.

Definition 3.11: Let (X,T) be an L – topological space, $D \in L^x$ and F denote the set of all γ closed sets in (X,T). A mapping $P: M^*(D) \to F$ is called an γ - remote neighborhood mapping on Dk, if for each $e \in M^*(D)$, it holds that $e \leq p(E)$.

Example 3.12: Let $X_1 \cap X_2 = \emptyset$, $X = X_1 \cup X_2$, L = [0, 1]. Defined fuzzy set (C_a, C_b) $\varepsilon [0, 1]^x$ as follows.

$$(C_{a},C_{b})(x) = \begin{cases} a & ifx \in X_{1} \\ b & ifx \in X_{2} \end{cases}$$

Let
$$\delta = \{\emptyset, \underline{1}, (C_{0.5}, C_{0.5})\}$$
. Then δ is a $[0, 1]$ - topology on X . $\forall e \in M(L^X)$, define
$$P(e) = \begin{cases} (C_{0.5}, C_{0.5}) & \text{if } e \leq (C_{0.5}, C_{0.5}); \\ 0 & \text{if } e \leq (C_{0.5}, C_{0.5}); \end{cases}$$
Then P is a γ remote neighborhood, mapping

Then P is a y remote neighborhood mapping

Theorem 3.13: Let (X, T) be an L – topological space, D ε L^x. Then D is γ connected if, and only if for any two coprime elements a, b ϵ M* (D) and any γ - remote neighborhood mapping P: M*(D) \rightarrow F, there exist finite many coprime elements $e_1 = a$, e_2 , ..., $e_n = b$ in D such that D' V P (e_i) V P $(e_{i+1}) \neq \underline{1}$, I = 1, 2, ..., n-1.

Proof: Suppose that D is not γ connected. Then there exist two γ - closed sets A, B such that D \leq A, D \leq B, D' \vee A \vee B = 1, D \wedge A \wedge B = 0. Define a pre-remote neighborhood mapping P: M*(D) \rightarrow F, such that $\forall e \in \mathcal{E}$ M*(D),

$$P(e) = \begin{cases} & A & \text{if } e \leq B; \\ & B & \text{if } e \leq B. \end{cases}$$

Take $a,b \in M^*(D)$ such that $a \le A$ and $b \le B$. Then for arbitrary flite many coprime elements $e_1 = \alpha, e_2, \dots, e_n = b$ in D, there exists an i such that $D'vP(e_i)v$ $D'vP(e_{i+1}) = \underline{1}$, this contradicts the condition of Theorem. Thus the sufficiency is proved. Conversely, suppose that there exist two coprime elements $a,b \in M^*(D)$ and an γ -remote neighborhood mapping P:M*(D) \rightarrow F such that for arbitrary finite many coprime elements $e_1=\alpha,e_2,\ldots,e_n=b$ in D, the following fact is not true: D'vP(e_i)v D'vP(e_{i+1}) \neq 1, i=1,2...n-1. In this case, we say that α and b cannot be linked. Let $A = \{e \in M^*(D): a \text{ and } e \text{ can be linked}\}$, $B = \{e \in M^*(D) | a \text{ and } e \text{ cannot be linked}\}$. Then $\forall c \in A$ and $\forall d \in B$, we have that $D'vP_{(c)}v \ D'vP_{(d)} = 1$. Put $A = \bigwedge \{P(c)|c \in A \} \bigwedge P(d)|d B\}$. Obviously we have that D A, D B, D'vAvB= $\underline{1}$, D'VAVB= $\underline{0}$. This shows that D is not γ -connected.

References:

- 1. D. M. Ali .Some other types of fuzzy connectedness. Fuzzy sets and systems, 16(1992).55-61.
- 2. D. M. Ali and A.K.Srivastava, On fuzzy connectedness, fuzzy sets and systems, 28 (1988), 203 208.
- 3. S. Z. Bai, Strong Connectedness in L-topoligical spaces. JFuzzy Math, 3(1995), 751 759
- 4. G. Baasubramanian and P. Sundaram, On some generalizations of fuzzy continuous functions. Fuzzy sets and systems 86(1997) 93 - 100.
- 5. G.Gierz, et al. A compendium of continuous lattices, Springer Verlag, Berlin, 1980
- 6. P. P. Pu and Y. M. Liu. Fuzzy topology I, Neighborhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl, 76(1980) 571-599.
- 7. P. Senthil Kumar and S. Sangeetha, On Fuzzy γ open sets in L fuzzy topological spaces (submitted)
- 8. F.G. Shi and C.Y. Zheng. Connectivity in fuzzy Topological molecular lattices, Fuzzy sets and systems, 29 (1989), 363 – 370
- N. Turanli and D. Coker. On some types of fuzzy connectedness in fuzzy topological spaces. Fuzzy sets and systems, 60 (1993), 97 - 102.
- 10. G. J. Wang. Theorey of topological molecular lattices, Fuzzy sets and systems 47 (1992). 351 376.
- 11. G. J. Wang, Theory of L fuzzy topological spaces, Shaanxi Normal University Press. Xi'an 1988.
- 12. G. M. Wang and F.G. Shi, Local connectedness of L-fuzzy topological spaces. Fuzzy systems and Mathematics, 10(4) (1996), 51 - 55
- 13. D. S. Zhao and G.J. Wang, A new kind of fuzzy connectivity, Fuzzy Mathematics 15-22.
- 14. C. Y. Zheng, Connectedness of Fuzzy topological spaces, fuzzy mathematics 2(1982), 56 66