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Abstract: 

A decade ago, a Frenchman mathematician Henri Lebesgue identifies that the Riemann Integral doesn’t 

work well on unbounded functions. It moves forward him to think of another approach to do the integration, 

which is called Lebesgue Integral. This paper will briefly talk about the inadequacy of the Riemann integral, and 

introduce a more comprehensive definition of integration, the Lebesgue integral. There are also some 

discussions on Lebesgue measure, which establish the Lebesgue integral. Some exemplariness, like Fσset, Gδ 

set also Cantor function will also be mentioned. 

Introduction: 

In the mathematics world, a countable set is a universal set with the same cardinality as some subset of 

the set of natural numbers. A countable set is either a finite set or a countable infinite set. Whether finite or 

infinite at in the way, the values of a countable set can always be counted one at a time and, although the 

counting may never finish, each element of the set is associated with a unique natural number. A set S is 

countable if there exists an injective function f from S to the natural numbers N = {0, 1, 2, 3, ...}.If such an f can 

be found that is also surjective (and therefore bijective), then S is called countably infinite. In another way, a set 

is countably infinite if it has a one-to-one correspondence with the natural number set, N.As skins above, this 

terminology is not a universal one. Some reviewers are used countable to mean what is here called countably 

infinite, and also do not include finite sets. 

Preliminaries: 
Bounded Function: A function f: A R is said to be bounded on A, if there exists a real number M>0 such that, 

|f(x)| M, x A. 

Riemann Integration: Let [a, b] be a given closed interval. By a partition of [a, b] , we mean a finite set P of 

pointsx0,x1,x2…….xn, Where To, Cl,X2, ......cn , where,  a [x0,x1],[x1,x2],…….[xi-1,xi],…[xn-1,xn] are the 

sub-intervals of [a, b]. We shall use the same symbol to denote the i
th

 sub-interval [xi-1,xi] as its sub-length xi-

xi-1.This, xi=xi-xi- 1,(i=1,2,3,…..n). Let the f be a bounded real-valued function on [a, b]. F is bounded on each 

sub-interval corresponding to each partition P. Let Mi, mi be the bounds (supremum and infimum) off in the two 

sums,  

U (p, f) =M1M2……+Mn 

L (P, f) =ixi=m1+m2x2+……+mnxn 

Are respectively called the upper and lower sums of f corresponding to the partition P.  If M, m are the bounds 

of f in [a, b], we have  

mmiMi  M 

Putting i = 1, 2, 3, .....n and adding all the inequalities we get  

m (b-a)L(P,f)U(p,f)M(b-a),ba. (0.1) 

Now each partition gives rise to a pair of sums, the upper and lower sums. By considering partitions of [a, b], we 

get a set U of upper sums and a set L of Lower sums. The inequality (0.1) shows that both these sets are 

bounded and so each set has the supremum and infimum.  

Upper Integral: The uniform of the set of upper sums is called the Upper integral and it is denoted by,  

(x)dx=inf U or inf{U(P,f):P is a partition of [a,b]}. 

Lower Integral: The supremum of the set of lower sums is called the Lower integral and it is denoted by  

(x)dx=sup L or sup{L(p,f):P is a partition of [a,b]}. 

Upper and Lower integrals may or may not be equal.  

Riemann Integral: A bounded function f is said to be Riemann integrable (or simply integrable) over [a, b] if 

it's Upper and Lower integrals are equal and the common value of Upper and Lower integrals is called the 

Riemann integral f f on [a, b], is denoted by: (x)dx.The fact that f is integrable over [a, b], we express by writing 

f  R[a, b] or R simply.  

Outer and Inner Measure of a Bounded Set:  
Let A [a, b] be any bounded subset of real numbers. The outer measure of A denoted by m*(A), is 

roughly defined as m*(A) = inf I(F), where the infimum is taken over all open sets F which contain A. F being 

open, can be expressed as a countable union of open intervals In, n = 1, 2, 3,……. Such that A.  
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For each such countable collection containing A, consider the sum of the lengths of the intervals in that 

collection. The outer measure of A is precisely then defined as  

m*(A)= A 

The inner measure of A denoted by m*(A), is defined as, m*(A)=sup m*(B), where the supremum is taken over 

the outer measures of all the closed sets B contained in the set A.  

A First Return Examination of the Lebesgue Integral: 

The main purpose of this chapter is to prove the following theorem, which shows that such a procedure 

is, indeed, available and is closely akin to that of Riemann integration. This is the main result of the article.  

Theorem: Suppose f :  𝑛 ⟼ ℝ is a Lebesgue-integrable function. Then there is a countable dense set D inПn
 

and an enumeration (xp : p ∈ N) of  D such that for each ∈> 0 there is a 𝛿> 0 such that if P is a partition of  Пn 

having norm less than 𝛿, then  

| 𝑓𝑗∈𝑝 (r(J))|J|- ∫Пf|<∈, 

Where (J) denotes the first element of the sequence that belongs to J. Before proving this result, we 

need to establish some notations and verify an elementary lemma which will be used repeatedly in the proof of 

the theorem.  

Throughout this chapter the dimension n of our Euclidean space ℝn
 is fired and denotes the unit 

"square" in r; that is, is the cartisian product of n copies of the unit interval [0,1].  

We shall use to denote the Lebesgue n-dimensional measure of a measurable set A c Rn and shall use 

DS and so to denote the boundary and interior, respectively, of a set S ⊆ℝn
. By a "rectangle" we mean a set J of 

the form 

J=[a1,b1]⨯[a2,b2] ⨯…………⨯[an, bn], 

Where each ai<bij; we call each [ai,bi] a side of J.  

A partition PofПnis a finite collection of non-overlapping rectangles whose union is In Пn. (By non-

overlapping, we mean that if Jl≠J2 belong to P,then𝜆(J1⋂J2=0.) An elementary fact that we shall use in the proof 

of the lemma is that no point of Пn belongs to more than 2
n
 rectangles J ∈ P. The norm of P, ||P ||, is the 

maximum of the lengths of the sides of all of the, J ∈ P.  

Let i ∈N and for each j= 0, 1, ......2
i
, let cj =j/2

i
. The uniform i- partition of П

n
, Qi, is the collection of 

all rectangles of the form  

[cj1,cj1+1]⨯[cj2,cj2+1]⨯………⨯[cjn,cjn+1], 

Where each integer jk satisfies 0 jk< 2
i
. If A ⊆ B ⊂П

n
 ,we say that A is i-fine in B provided that for 

each J ∈ Qi for which J
0⋂B≠ ∅ ,it follows that J

0⋂ A ≠ ∅. 

Fix ayt∈ F and fix a J ∈ G containing yt, if such a J exists. There can be atmost 2
n
 such J's containing yt. Without 

loss of generality suppose that  

A ⋂ J has positive measure. Since J ⋂ SA= ∅, if I ∈ Q i and I ⊆ J, then I⋂A = ∅. Thus, if I ∈, Qi satisfies I⋂ 

(J⋂A) ≠ ∅, then I⋂𝜕J ≠ ∅. However, there are atmost B(n).(2i)
n-1

 such I ∈Qi .Hence, 

𝜆 (A⋂ 𝐽𝐽∈𝐺 )<2
n
.K.B(n).(2

i
)

n-1
1/(2i)

n 

= 𝐾. 𝐵(n).2n
𝐾.𝐵 𝑛 .2𝑛

2𝑖
<ῃ, 

Completing the proof 

Proof of Theorem:  

For each j ∈ℕ we set:  Aj={x:j-1≤|f(x)|<j},Hence, and note that since f is integrable, the series 

 𝑗𝜆∞
𝑗=1 (Aj) converges. ltill be convenient to denote the tails of this series by ϛj= 𝑘𝜆∞

𝑘=𝑗+1 (Ak).  

For each j we use Lusin's theorem repeatedly to obtain a sequence, {𝐴𝑗
𝑖}, of pairwise disjoint, perfect 

subsets of Aj such that λ{𝐴𝑗
𝑖}=

𝜆(𝐴𝑗 )

2𝑖
and the restriction of f to 𝐴𝑗

𝑖 , f |𝐴𝑗
𝑖 , is continuous. Thus, for each j we have  

λ(Aj)= 𝜆∞
𝑖=1 (𝐴𝑗

𝑖 ). 

Also, for each j we set  

Bj=  
𝑗
𝑘=1   

𝑗
𝑘=1 𝐴𝑗

𝑖 ,Cj= 𝐴∞
𝑘=𝑗+1 k, and Dj=  

𝑗
𝑘=1

∞

𝑖=𝑗+1
𝐴𝑘

𝑖 , and note that λ (Bj) + λ(Cj)+λ(Dj) = 1.  

Furthermore, we set 𝐵𝑗
∗= 

𝐵𝑗
𝐵𝑗 − 1, where we take B0= ∅. Note that for each j, f|Bj is continuous and is in 

absolute value lessthan j.  

For each j ∈ℕ, apply Tietze's extension theorem to obtain fjas a continuous ectensionof f|Bj to all of 

П
n
with |fj(x)| < j for all x ∈П

n
. for each j ∈ℕ let ∈j =

1

2𝑗
 and let 𝛿j be a positive number such that 𝛿j witnesses the 

Riemann integrability of fj over П
n
 with respect to ∈j; that is, if P s(J) denotes any point in J, then  

| 𝑓𝐽∈𝑃 j(s(J))|J|-∫ Пnfj|<∈j (1.1) 

Our next goal is to inductively by stages define the sequence (xp : p ∈ N). At stage 1, we choose a 

finite set S ⊂ Bl so that S is 1-fine in Bl. We list these points in any order as x1,x2,….xp1. Now, suppose stage j 

has been completed with x1,x2,….xpjhaving been selected and ordered. We proceed to stage j + 1. First select a 
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finite subset Sj+l C B*j+l such that Sj+l is (j + l)-fine in B*j+l. We are going to apply the blocking lemma j times, 

each time taking ŋ=
1

 𝑗+1 2𝑗+1.
 

Initially, apply the blocking lemma with F = Sj+l and A= 𝐵𝑗
∗ to determine a finite subset Sj⊂𝐵𝑗

∗ which 

satisfies the conclusion of that lemma. We may clearly assume that Sj is (j + l)-fine in and contains no Xp,p≤pj, 

since all of the sets 𝐴 𝑘
𝑖 are perfect. Next, assume that  

Sj⊂𝐵𝑗
∗,Sj-1⊂𝐵𝑗−1

∗ ,……………..,Sj-k⊂𝐵𝑗−𝑘
∗  

have been selected for some 0≤ 𝑘 ≤ 𝑗 − 2. Apply the blocking lemma with F = 𝑆𝑘
𝑖=−1 j-i ,A=𝐵𝑗−𝑘−1,

∗ to 

yield a finite set Sj-k-1 ⊂𝐵𝑗−𝑘−1
∗ . Again, we may assume that is (j + l)-fine in 𝐵𝑗 −𝑘−1

∗ and contains no xp,p≤pj. We 

do this for each 0 ≤ 𝑘 ≤ j-2. We now complete stage j +1 by appending the points from  𝑆
𝑗−1
𝑘=−1 j-k to 

(x1,x2,…….xpj), first appending those from Sl(in any order), ……., and finally then those from Sj+1. This 

completes stage j + 1 and we have defined x1,x2,……xpj,xpj+1,……..xpj+1. 

Once all stages have been carried out, the sequence (xp : p e N) has been completely specified and it 

remains to show that this sequence accomplishes what the theorem claims. First, note that if D = {xp : p ∈ℕ}, 

then D is clearly dense П
n
 in .  

Before proceeding to see that the rest of the conclusion holds, we wish to make an additional 

observation. Fix a j ∈ℕ and let p be any partition of П
n
We shall let B(n) denote the number of(n- l)-dimensional 

rectangles of (n - l)-dimensional measure one which form the boundary of П
n
. In proving the lemma we shall 

make use of the elementary fact that if J ⊆П
n
 is any rectangle, then the number of elements of Qi which intersect 

the boundary of J is atmost B(n).(2
i
)

n-1
. 

A Random Approach to the Lebesgue Integral: 

Introduction: 

In this chapter we define an integral on Lebesgue measurable, real valued functions whose construction 

is similar to that of the Riemann integral. This is done by using Riemann sums which are random variables, and 

taking their limit in probability. This limit when it exists we call the random Riemann integral. The Riemann 

integral only exists for functions which are bounded and whose discontinuity points are a Lebesgue null set, the 

convergence of the random Riemann integral requires only a much weaker condition on the function to be 

integrated. We prove in fact that this integral exists and is equal to the Lebesgue integral if the Lebesgue integral 

exists.  

We then prove further results on the convergence of Riemann sums treated as random variables, and its 

dependence on both the size of the function and those of the interval partitions on which the Riemann sums are 

constructed. 

 The idea of the random Riemann integral comes from that of the first return integral in the article , 

which is the base of this chapter. A sequence of real numbers which is dense in the unit interval determines an 

interval function; the first term of the sequence which belongs to the interval is the first return point of the 

interval. The first return integral was first suggested in , which was discussed in the previous chapter.  

Notations: 

In what follows, f is a Lebesgue measurable function from the unit interval П:= [0, 1] into ℝ. We write 

the Lebesgue measure of a set A⊂ℝ as |A|.  

The Lebesgue integral of a function f on a set A is denoted ∫A f and on П simply by ∫ f. A partition P is 

a finite collection of non degenerate intervals {Ik⊆ П:1≤ 𝑘 ≤ 𝑛} such that the interiors of any two intervals are 

disjoint and the union of all the intervals is П. The size of P is |P|:= max(|Ik|: Ik∈P).  

Random Riemann Sums:  

Suppose f : П⟼ℝ is a Lebsgue measurable function. Given a partition P, we define the random 

Riemann sum of f on P as follows.  

For each 1k∈ P, let tk∈1k be a random variable with the uniform distri- bution on that interval, and with 

ti and tj independent for all i≠ j. Then define random variables Xk=|Ik|. f (tk) for each k. Note that E(f(tk)) =
1

|𝐼𝑘 |
 

∫1k f , and so E(Xk) =∫1kf and further  E(𝑋𝑘
𝑝
) = |𝐼𝑘 |𝑝−1 .∫1k 𝑓

𝑝 if this integral exists.  The random Riemann sum of f 

on P is  𝑆𝑝  (f):=  𝑋𝑘 . It is monotone and linear in f, and has expectation, E(Sp(f)) =  ∫ Ik f  = ∫ f.  

This suggests that the random Riemann sum approximates the integral of a function. We hope to find a 

weak or strong law of large numbers which will allow us to define an integral from the random Riemann sum, 

equal to the Lebesgue integral. We will also use that,  E |𝑋𝑘|𝑝  =  |𝐼𝑘|𝑝−1  . ∫
𝐼𝑘

|f|𝑝 .≤ |p|𝑝−1 ∫ |f|𝑝(3.1)  

Almost Every Sequence Integrates: 

Introduction and Notation: 

We let Ω = {𝑋
−: ℕ→[0,1]} denote the standard sequence space with the usual product measure 𝜇. We 

shall use both x(p) and 𝑥𝑝 to denote the p-th term of a sequence x. If F : Ω→ ℝ is 𝜇-kintegrable, we denote its 

integral by E(F) = ∫
Ω 

Fd𝜇 . Also, if S is any proposition about sequences, P(S) = 𝜇({x:S(x) is true}) denotes the 

probability that S is true.  
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We denote the Lebesgue measure of a (measurable) set A ⊆ℝ by λ(A) and the Lebesgue integral of a 

real-valued and integrable f over A by∫
𝐴

f; in the special case that A = [0, 1] we abbreviate this as∫ f. We use l(1) 

to denote the length of an interval.  

Let f : [0, 1] → ℝ be Lebesgue integrable statement . For each interval, I ⊆ [0, 1], define 𝐹𝐼 : Ω → ℝ by 

𝐹1(x) = f or((x,I)) where r((x,I)) =𝑥𝑝  with p = min{n : 𝑥𝑝 ∈ I} if such a minimum exists, or 𝐹𝐼(x) =-∞ if x(n) ∉ I 

for all n ∈ ℕ. Let J ⊆ [0, 1] be an interval, let P denote a partition of J and ||P|| denote its mesh. We say 

that the sequence x ∈ 𝛺 integrates f on J if,  𝐹𝐼∩𝐽𝐼∈𝑃 (x)l(I∩J) =∫
𝐽
f. (3.1) 

We say that integrates f if x integrates f on every interval J ⊆ [0, 1]. It was shown in chapter l that for 

each Lebesgue integrable f : [0, 1]→ ℝ, there is a sequence x which integrates f.  

M.J .Evans and P.D.Humke are interested in determining the measure 𝜇of the set of sequences x which 

integrate a given Lebesgu eintegrable function f :[0,1]→ ℝ.This work is presented in this chapter. Throughout 

the chapter we concern ourselves with the case of a bounded measurable function f : [0, 1]→ ℝ. Suppose {𝑝𝑛} is 

a sequence of partitions of [0, 1] with mesh converging to 0. If for a sequence x ∈ 𝛺 

 𝐹𝐼∩𝐽𝐼∈𝑝𝑛
(x) l(I∩J) =∫

𝐽
f (3.2) 

for each subinterval J ⊆ [0, 1], we say that x integrates f with respect to the sequence {𝑃𝑛}. The 

following remark follows readily from the Lebesgue Density Theorem. 

Theorem: 

Suppose f : [0, 1] → ℝis bounded and measurable. Then there is a sequence of partitions 𝑃𝑛 such that for 

almost every x ∈ 𝛺,x integrates f with respect to the sequence {𝑃𝑛  }.  

The nature of the sequence Pn from Theorem 3.1 depends on the nature of the bounded measurable 

function f. The purpose of this chapter is to show that under rather general circumstances, any sequence of 

partitions will do. The condition we use is that the sequence of meshes {||𝑃𝑛 ||} is summable, or more generally 

that some power of the mesh sequence is summable.  

Theorem: 

Suppose f : [0, 1] →ℝ is bounded and measurable and for each n ∈ ℕ let 𝑃𝑛  be a partition of [0, 1] 

with||𝑃𝑛 ||= 𝑚𝑛 . If { 𝑚𝑛}∈  𝑙𝑗∞
𝑗=1 , then for almost every G o, j integrates f with respect to the sequence{𝑃𝑛}. 

Proof:  

Let B > 0 be a bound for If). Fic a sequence of partitions {𝑃𝑛} and suppose that (3.2) is true for any 

fixed interval J ⊆ [0, 1] for a.e .sequence x ∈ 𝛺 . Then, by intersecting countably many sets of full measure, it is 

easy to see that (3.2) is true for any countable collection of intervals for a.e. sequence x ∈ 𝛺. However, if (3.2) 

holds for all rational intervals and a.e. sequence x ∈ 𝛺, then almost every sequence integrates f with respect 

to {𝑃𝑛}. Thus, it suffices to show that (3.2) is true for J = [0, 1] for a.e. sequence x ∈ Ω.  

Define functions𝑓𝑛,𝑖  : Ω→ ℝand 𝑔𝑛,𝑖  : Ω→ ℝas follows  

𝑓𝑛,𝑖(x) =f or (x, 𝐼𝑛,𝑖).l(𝐼𝑛,𝑖) = 𝐹𝐼𝑛 ,𝑖
(x).l(𝐼𝑛,𝑖), 𝑔𝑛,𝑖(x) = 𝑓𝑛,𝑖 (x) -𝑎𝑛,𝑖where 𝑎𝑛,𝑖𝑖

= ∫
𝐼𝑛 ,𝑖

 f . 

It follows that E (𝑓𝑛,𝑖) =𝑎𝑛,𝑖 , so that E(𝑔𝑛,𝑖), and an easy computation Shows that 

E(∫ )
𝑘

𝑛,𝑖
=(∫ 𝑓𝑘𝑘

𝐼𝑛 ,𝑖
).𝑙𝑘−1(𝐼𝑛,𝑖). Since both |𝑓𝑛,𝑖 |and|𝑎𝑛,𝑖 |are at most Bl(𝐼𝑛,𝑖) we have |𝑔𝑛,𝑖 |≤2Bl (𝐼𝑛,𝑖) and 

consequently  |E(𝑔𝑛,𝑖
𝑘 )|≤ 2𝑘𝐵𝑘 𝑙𝑘(𝐼𝑛,𝑖). (3.3) 

By hypothesis, there is a p ∈ ℕ such that {𝑚𝑛
𝑝
} is summable. If Sn= 𝑔𝑛,𝑖

𝑀𝑛
𝑖=1 , we next wish to show that 

E(𝑆𝑛
2𝑝

) = O(𝑚𝑛
𝑝
) Let us adopt the notation,   

K={(𝑘1, 𝑘2, …… 𝑘𝑀𝑛
) ∈{0,1,2,3,……,2𝑝}𝑀𝑛  :  𝑘𝑖

𝑀𝑛
𝑖=1  = 2p } and  k* ={(𝑘1 , 𝑘2, …… 𝑘𝑀𝑛

) ∈ K : ki≠1 for each 

i=1,2,…….Mn} 

Using the multinomial theorem, the linearity of expectation, and the independence of the functions gn,i, 

we obtain  

E(𝑆𝑛
2𝑝

) = E(( 𝑔𝑛,𝑖
𝑀𝑛
𝑖=1  )

2p)
= ((𝑘1 ,𝑘2 ,…..𝑘𝑀𝑛 )∈𝐾

( )𝑘1 ,𝑘2 ,…..𝑘𝑀𝑛

2𝑝  𝐸
𝑀𝑛
𝑖=1  (𝑔𝑛,𝑖

𝑘𝑖 )) 

Then, using the fact that each E(𝑔𝑛,𝑖) = 0, we have   E(𝑆𝑛
2𝑝

) = ((𝑘1 ,𝑘2 ,…..𝑘𝑀𝑛 )∈𝐾
( )𝑘1 ,𝑘2 ,…..𝑘𝑀𝑛

2𝑝  𝐸
𝑀𝑛
𝑖=1  (𝑔𝑛,𝑖

𝑘𝑖 )) 

From this and inequality (3.3) we obtain   

| E(𝑆𝑛
2𝑝

)| ≤  ((𝑘1 ,𝑘2 ,…..𝑘𝑀𝑛 )∈𝐾
( )𝑘1 ,𝑘2 ,…..𝑘𝑀𝑛

2𝑝  𝐸
𝑀𝑛
𝑖=1  (𝑔𝑛,𝑖

𝑘𝑖 )|) 

≤ (2p)!  ((𝑘1 ,𝑘2 ,…..𝑘𝑀𝑛 )∈𝐾
 𝐸

𝑀𝑛
𝑖=1  (𝑔𝑛,𝑖

𝑘𝑖 )|) ≤(2p)!  ((𝑘1 ,𝑘2 ,…..𝑘𝑀𝑛 )∈𝐾
 𝐸

𝑀𝑛
𝑖=1  (𝑔𝑛,𝑖

𝑘𝑖 )) 

=(2p)!2
2p

B
2p ((𝑘1 ,𝑘2 ,…..𝑘𝑀𝑛 )∈𝐾

 𝑙𝑘𝑖
𝑀𝑛
𝑖=1  (𝑙𝑛,𝑖) (3.4)  𝑁ext, we observe that 

 ((𝑘1 ,𝑘2 ,…..𝑘𝑀𝑛 )∈𝐾
 𝑙𝑘𝑖

𝑀𝑛
𝑖=1 (𝐼𝑛,𝑖)) ≤  ……   (𝑙2𝑀𝑛

𝑖1=1

𝑀𝑛
𝑖2=1

𝑀𝑛
𝑖𝑝=1

(𝐼𝑛,𝑖1
)l

2
(𝐼𝑛,𝑖1

)…….l2(𝐼𝑛,𝑖𝑝 )) 

=   (𝑙2𝑀𝑛
𝑖𝑝=1

(𝐼𝑛,𝑖𝑝 )(….( (𝑙2𝑀𝑛
𝑖2=1

(𝐼𝑛,𝑖2
)( 𝑙2𝑀𝑛

𝑖1=1
(𝐼𝑛,𝑖1

))))…..)) ≤ 𝑚𝑛
𝑝

, (3.5) 

Where the final inequality follows from the observation that for each i,   𝑙2𝑀𝑛
𝑖=1 (𝑔𝑛,𝑖) ≤ 𝑚𝑛  𝑙

𝑚𝑛
𝑖=1 (𝐼𝑛,𝑖) =  𝑚𝑛 . 

From (3.4) and (3.5) we obtain the bound |E(𝑆𝑛
2𝑝

)|≤ (2𝑝)!4
p
B

2p𝑚𝑛
𝑝
. 
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Now, let c > 0 be given. We wish to compute  P(| 𝑓
𝑀𝑛
𝑖=1  or (𝑥 ,𝐼𝑛𝑖

)l(𝐼𝑛𝑖
)- ∫ 𝑓| ≥ ∈). 

We have,  P(| 𝑓
𝑀𝑛
𝑖=1  or (𝑥 ,𝐼𝑛𝑖

)l(𝐼𝑛𝑖
)- ∫ 𝑓| ≥ ∈) = p(| 𝑔𝑛,𝑖

𝑀𝑛
𝑖=1 |≥∈) = P(|sn|≥∈). 

However,  P(|sn|≥∈) ≤ 
𝐸(𝑆𝑛

2𝑝
)

𝑒2𝑝 ≤
 2𝑝 !.4𝑝 .𝐵2𝑝

∈2𝑝 𝑚𝑛
𝑝

. 

Since {𝑚𝑛
𝑝
 } is summable, it follows from the Borel-Cantelli Lemma that limsup An has measure zero 

where An = {𝑥 :|Sn(𝑥)|    ≥ ∈ }. It is easy to see that if 𝑥 ∉ limsup An, then 𝑥  integrates f with respect to the 

sequence {Pn} so this completes the proof.  

Conclusion: 

This section presents functions commonly used in this role, but not the verifications that these 

functions have the required properties. The Basic Theorem and its Corollary are often used to simplify proofs. 

Counting as a process of determinantthe numbers of elements of a finite set of objects. Always traditional way 

of counting consists as continually increasing a counter by a unit for every element of the set, in some order, 

while marking those elements to avoid viewing the same absolute element more than once, up to that no 

unmarked elements are left; if the counter was set to one after the first object, the value after analysing the final 

object gives the desired number of elements. The relative terminology enumeration refers to a uniq identifying 

the elements of the finite set or a infinite set by assigning a number to each element. 
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