

FAKE NEWS DETECTION AND CLASSIFICATION BASED ON LOGISTIC REGRESSION (LR) AND ARTIFICIAL NEURAL NETWORKS (ANN)

Sourabh* & Rahul Kaushik**

- * PG Scholar, Computer Science and Engineering Department, Bhiwani Institute of Technology & Sciences, Bhiwani, Haryana
- ** Assistant Professor, Computer Science Engineering Department, Bhiwani Institute of Technology & Sciences, Bhiwani, Haryana

Cite This Article: Sourabh & Rahul Kaushik, "Fake News Detection and Classification Based on Logistic Regression (LR) and Artificial Neural Networks (ANN)", International Journal of Advanced Trends in Engineering and Technology, Volume 8, Issue 1, Page Number 54-64, 2023.

Abstract.

Fake news detection has emerged as a crucial challenge in today's digital age, where misinformation can rapidly spread and influence public opinion. This paper addresses the problem of fake news detection by leveraging machine learning algorithms and natural language processing techniques. The objective is to develop a reliable and accurate model that can classify news articles as fake or genuine. The methodology involves data selection and loading, data preprocessing, splitting the dataset into train and test data, classification, prediction, and result generation. A labeled dataset comprising examples of both fake and genuine news articles is collected and preprocessed to remove noise and irrelevant information. The dataset is then split into training and testing subsets to train a classification model. Two classification algorithms, Logistic Regression (LR) and Artificial Neural Networks (ANN), are utilized to build the fake news detection model. LR provides a linear decision boundary, while ANN captures complex nonlinear relationships in the data. Both algorithms are trained on the preprocessed data, and their performances are evaluated using metrics such as accuracy, precision, recall, and F1 score. The results demonstrate that both LR and ANN achieve high accuracy in detecting fake news. LR offers interpretability, making it easier to understand the factors influencing the classification decisions. ANN exhibits better performance in capturing intricate patterns and relationships in the data. The findings of this study contribute to the development of effective fake news detection systems.

Key Words: Logistic Regression (LR) and Artificial Neural Networks (ANN), Fake News Detection, Social Media

Introduction:

The rapid growth of digital media and social networking platforms has revolutionized the way news and information are shared and consumed. However, this digital age has also brought about a significant challenge: the proliferation of fake news. Fake news refers to intentionally fabricated or misleading information presented as factual news to deceive readers and manipulate public opinion. The impact of fake news on society is profound. It can sway public sentiment, distort public discourse, and even influence political elections. Recognizing the detrimental consequences, researchers and technologists have turned their attention to developing effective solutions for detecting and combating fake news [1].

Fake news detection is a complex task that requires the integration of various techniques from fields such as natural language processing, machine learning, and data analysis. The objective is to build models that can automatically differentiate between genuine news articles and fake ones, thereby providing users with accurate and trustworthy information. The detection of fake news involves analyzing textual content, assessing the credibility of sources, and evaluating the contextual information surrounding the news article. Machine learning algorithms play a crucial role in this process by learning patterns and features from labeled datasets and making predictions on unseen data.

Several challenges arise in the development of fake news detection systems. These challenges include acquiring reliable and diverse datasets, preprocessing textual data, handling bias and contextual nuances, addressing adversarial attacks, and ensuring the generalization of the models to unseen instances. Despite these challenges, researchers have made significant progress in developing effective techniques and models for fake news detection [2-3]. Approaches such as logistic regression, artificial neural networks, and ensemble methods have shown promise in achieving high accuracy and robustness in detecting fake news. The development of reliable fake news detection systems has far-reaching implications. It can mitigate the spread of misinformation, protect media credibility, empower individuals to make informed decisions, and safeguard the integrity of democratic processes. Moreover, the advancements made in this field contribute to the broader fields of natural language processing, machine learning, and data analytics [4-6].

In this paper, we present an overview of the fake news detection problem and the methodologies employed in developing effective detection systems. We discuss the challenges faced in this domain and highlight the motivations behind tackling the issue. Furthermore, we explore the potential applications of fake news detection systems and outline future research directions to enhance the accuracy and resilience of these models. By developing reliable and accurate fake news detection systems, we can strive to create a more

informed and trustworthy information ecosystem, where individuals can rely on credible sources and make well-informed decisions based on factual information.

Motivation:

The proliferation of fake news in today's digital landscape poses a significant threat to the integrity of information and the well-being of society. The motivation behind developing effective fake news detection systems stems from several key factors:

Preserving Media Credibility:

Fake news undermines the credibility of reputable media sources and erodes public trust in journalism. By developing robust detection systems, we can help restore confidence in the media and ensure that consumers can rely on accurate and trustworthy information sources.

Mitigating the Spread of Misinformation:

Fake news has the potential to spread rapidly, thanks to the ease of sharing information on social media platforms. Detecting and flagging fake news articles can help curb the dissemination of misinformation, preventing its negative impact on public opinion and decision-making.

Protecting Democratic Processes:

Fake news can be used as a tool to manipulate public sentiment, sway elections, and undermine democratic processes. By detecting and exposing fake news, we can safeguard the integrity of democratic systems and promote fair and informed public discourse.

Empowering Individuals:

Providing individuals with the tools to identify fake news empowers them to make informed decisions based on accurate information. By equipping users with the ability to critically evaluate news articles, we enable them to navigate the digital landscape more effectively and avoid falling victim to manipulation.

Enhancing Social Well-being:

Fake news has real-world consequences, ranging from public health misinformation to social unrest. Detecting and countering fake news can contribute to the well-being of society by promoting accurate information, reducing conflicts, and minimizing the potential harm caused by misleading content.

Advancing Technology and Research:

Fake news detection serves as a challenging problem that requires advancements in natural language processing, machine learning, and data analytics. Developing effective detection systems pushes the boundaries of technology and fosters innovation in these fields, benefiting various related domains.

Collaboration and Responsibility:

Addressing the issue of fake news necessitates collaboration among researchers, fact-checking organizations, media entities, and technology companies. By working together, we can collectively tackle the problem and fulfill our responsibility to ensure the availability of accurate and reliable information. The motivation behind fake news detection lies in the fundamental belief that access to accurate and trustworthy information is crucial for a functioning democracy, informed decision-making, and the well-being of individuals and society as a whole. By combating the spread of fake news, we strive to create a more reliable and responsible information ecosystem that upholds the values of transparency, truth, and integrity [7].

Related Work:

Nihel Fatima Baarir et.al. 2020, The phenomenon of Fake news is experiencing a rapid and growing progress with the evolution of the means of communication and Social media. Fake news detection is an emerging research area which is gaining big interest. It faces however some challenges due to the limited resources such as datasets and processing and analyzing techniques. In this work, we propose a system for Fake news detection that uses machine learning techniques. We used term frequency inverse document frequency (TF-IDF) of bag of words and n-grams as feature extraction technique, and Support Vector Machine (SVM) as a classifier. We propose also a dataset of fake and true news to train the proposed system. Obtained results show the efficiency of the system [8].

Anmol Uppal et.al (2020) the online media sector has a significant impact on our society and culture in both positive and negative ways. As online media becomes more dependent on news sources, more and more fake news is being published online. These fake news do not have old or complete information about the authenticity of the event when people follow the fake news. Such misinformation can distort public opinion. The rapid growth in the dissemination of fake news has become a major threat to the public's credibility of the news. It appears that the growing demand for surveillance and dealing with fake information has become a major problem. But, due to the limited literature on detecting new false positives, many methods and techniques may not yet be developed. The main purpose of this article is to review existing methods and propose and implement automated fraud detection methods. The proposed method uses in -depth analysis of speech level analysis to construct a system that distinguishes false information from real information. At least the model achieved 74% satisfaction [9].

Lovedeep Singh et.al (2020) Fake information retrieval is a major problem in the field of natural word processing. In this field, the benefits of effective solutions are multiplied by the benefits of society. Externally it

corresponds to the problem of text classification in general. Researchers have proposed a variety of ways to deal with fake information using simple and complex techniques. In this article, we attempt to represent new cases in some vector spaces by using a combination of general mathematical functions and representations of existing vector spaces to compare current deep learning techniques. We performed many experiments using various combinations and permutations. Finally, we conducted a moderate analysis of the results and evaluated the reasons for these results [10].

Proposed System:

Fake news detection can benefit from a combined approach that utilizes Logistic Regression (LR) and Artificial Neural Networks (ANN) for classification. The proposed approach involves leveraging the strengths of LR and ANN to enhance the accuracy and effectiveness of fake news detection systems. The first step in the approach is to preprocess the data by cleaning and transforming the textual content of news articles into numerical representations. This may involve techniques such as tokenization, stop-word removal, and vectorization methods like TF-IDF or word embeddings. The preprocessed data is then split into training and testing sets. Next, the LR algorithm is applied to the training data. LR is known for its simplicity and interpretability, making it a suitable choice for modeling the relationship between the input features and the binary classification of fake or genuine news. LR estimates the probabilities of news articles belonging to either class based on the weighted sum of the input features. Following the LR model, an ANN is constructed and trained using the same training data.

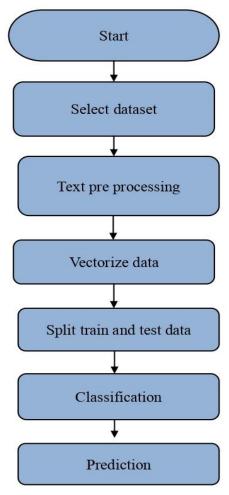


Figure 1: Proposed Flow Diagram

ANN excels at capturing complex patterns and relationships in data, which can be valuable for fake news detection. The ANN's architecture typically consists of multiple layers of interconnected neurons, with each neuron performing weighted sums and applying activation functions. During training, the ANN learns to recognize patterns in the input features that are indicative of fake or genuine news. The training process involves iteratively adjusting the weights of the neurons using techniques like backpropagation to minimize the error between predicted and actual class labels. Once both the LR and ANN models are trained, they can be combined for classification. The LR model's probabilities for each class can serve as additional features for the ANN model, enriching the input representation and providing complementary information. This fusion of LR and ANN can improve the accuracy and robustness of the overall fake news detection system. The testing data are

input into the models, and the models' predictions are compared to the labels that were determined to be the ground truth in order to evaluate the performance of the combined LR-ANN technique. Calculations of a variety of evaluation metrics, including accuracy, precision, recall, and F1 score, can be performed in order to determine how effective the method is at identifying instances of fake news. The suggested method for LR and ANN-based false news detection may be broken down into several crucial processes, including data selection and loading, data preprocessing, dividing the dataset into train and test data, classification, prediction, and result production.

Data Selection and Loading:

- Select a dataset that consists of labeled news articles, with each article classified as fake or genuine.
- Load the dataset into the system, ensuring it is in a suitable format for further processing.
- Data Pre-processing:

Data Preprocessing:

- Perform data preprocessing steps to clean and transform the textual data.
- This may include removing irrelevant characters, converting text to lowercase, and handling special cases like URLs or hashtags.
- Apply techniques such as tokenization, stemming, and stop-word removal to prepare the text for further analysis.
- Consider using techniques like TF-IDF [11] or word embeddings to represent the text numerically.

Splitting Dataset into Train and Test Data:

- Split the pre-processed dataset into two subsets: a training set and a testing set.
- The training set is used to train the LR and ANN models, while the testing set is used to evaluate the performance of the models.

Classification:

- Train the LR model on the training data.
- Use LR to model the relationship between the input features and the binary classification of fake or genuine news.
- Estimate the probabilities of news articles belonging to each class using the LR model.

Prediction:

- Train the ANN model on the training data.
- Use ANN to learn patterns and relationships in the input features that can distinguish fake from genuine news.
- Feed the LR probabilities as additional features to the ANN model.
- Use the combined LR-ANN model to predict the class labels for the testing data.

Result Generation:

- Use evaluation metrics like accuracy, precision, recall, and F1 score [12-13] to assess the effectiveness of the LR-ANN model.
- Compare the predicted class labels with the ground truth labels for the testing data.
- Generate a report or summary that includes the performance metrics and any additional insights or visualizations.

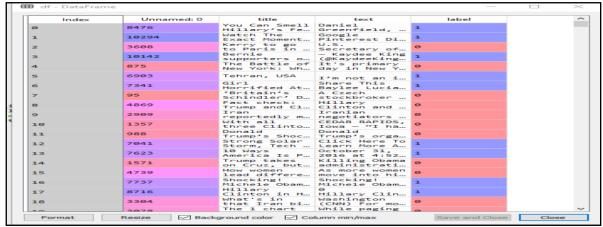


Figure 2: Data frame

A data frame is a two-dimensional data structure commonly used in data analysis and manipulation. It can be thought of as a table where rows represent observations or instances, and columns represent variables or features

Figure 3: Pretend Data

The pretend data array has three rows and three columns, forming a 3x3 matrix. Each element in the array represents a value in the pretend dataset

Figure 4: Stop Word List

Stop words are common words that are often removed from text during natural language processing tasks, such as text analysis or information retrieval. These words are typically considered to have little or no semantic meaning and do not contribute significantly to the overall understanding of the text.

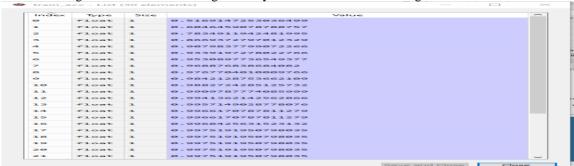


Figure 5: Train Accuracy

To calculate the train accuracy, need the predicted labels from trained model with the actual labels of the training data.

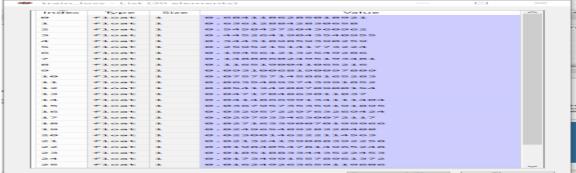


Figure 6: Train Loss

Figure 7: X Test

X_test: This variable represents the feature matrix of the testing set. It contains the input features for the unseen data on which you want to evaluate the trained model [14]

Figure 8: X Train

X_train: This variable represents the feature matrix of the training set. It contains the input features or independent variables used to train the model.

Figure 9: Y Test

Figure 10: Y Train

y_train: This variable represents the target variable or the dependent variable corresponding to the training set. It contains the actual labels or values you want the model to predict based on the input features in X_train [15]

Logistic Regression:

Accuracy:	99.08285113098368				
Precision	Recall	F1-	Score	Support	
	0	0.93	0.92	0.93	966
	1	0.92	0.93	0.93	935
Accuracy			0.93	1901	
Macro avg	0.93	0.93	0.93	1901	
Weighted avg	0.93	0.93	0.93	1901	

The Logistic Regression (LR) algorithm achieved an accuracy of 99.08%. This means that the LR algorithm correctly classified 99.08% of the samples in the dataset. The performance of the LR algorithm can be further evaluated using precision, recall, and f1-score metrics for each class (0 and 1) in the classification task.

For Class 0:

The precision is 0.93, indicating that out of all the samples predicted as class 0, 93% were actually true positives. The recall is 0.92, meaning that the LR algorithm correctly identified 92% of the samples belonging to class 0.The f1-score is 0.93, which is a balanced measure of precision and recall, taking into account their harmonic mean.

For Class 1:

The precision is 0.92, indicating that out of all the samples predicted as class 1, 92% were actually true positives. The recall is 0.93, meaning that the LR algorithm correctly identified 93% of the samples belonging to class 1. The f1-score is 0.93, again representing a balanced measure of precision and recall. The weighted average of precision, recall, and f1-score accounts for the imbalance in class distribution and is also calculated. In this case, the weighted average accuracy for the LR algorithm is reported as 93%.

Artificial Neural Network:

AI tiliciai incui ai incuvoi k.	
Epoch 1/30	
-	===] - 0s 9ms/step - loss: 0.6927 - accuracy: 0.5180
Epoch 2/30	
-	===] - 0s 7ms/step - loss: 0.6783 - accuracy: 0.7751
Epoch 3/30	
	===] - 0s 7ms/step - loss: 0.6104 - accuracy: 0.8805
Epoch 4/30	
-	===] - 0s 6ms/step - loss: 0.4736 - accuracy: 0.9028
Epoch 5/30	
15/15 [====================================	===] - 0s 6ms/step - loss: 0.3332 - accuracy: 0.9283
Epoch 6/30	
15/15 [====================================	===] - 0s 6ms/step - loss: 0.2338 - accuracy: 0.9475
Epoch 7/30	
15/15 [====================================	===] - 0s 6ms/step - loss: 0.1722 - accuracy: 0.9637
Epoch 8/30	
15/15 [====================================	===] - 0s 6ms/step - loss: 0.1324 - accuracy: 0.9718
Epoch 9/30	
15/15 [====================================	===] - 0s 6ms/step - loss: 0.1052 - accuracy: 0.9793
Epoch 10/30	
15/15 [====================================	===] - 0s 9ms/step - loss: 0.0872 - accuracy: 0.9824
Epoch 11/30	
15/15 [====================================	===] - 0s 9ms/step - loss: 0.0740 - accuracy: 0.9880
Epoch 12/30	
15/15 [====================================	===] - 0s 6ms/step - loss: 0.0642 - accuracy: 0.9914
Epoch 13/30	
15/15 [====================================	===] - 0s 6ms/step - loss: 0.0568 - accuracy: 0.9937
Epoch 14/30	
15/15 [====================================	===] - 0s 6ms/step - loss: 0.0506 - accuracy: 0.9953
Epoch 15/30	
15/15 [====================================	===] - 0s 6ms/step - loss: 0.0454 - accuracy: 0.9959
Epoch 16/30	
15/15 [====================================	===] - 0s 6ms/step - loss: 0.0410 - accuracy: 0.9962
Epoch 17/30	-
15/15 [====================================	===] - 0s 6ms/step - loss: 0.0372 - accuracy: 0.9964
Epoch 18/30	-

15/15 [====================================
Epoch 19/30
15/15 [====================================
Epoch 20/30
15/15 [====================================
Epoch 21/30
15/15 [====================================
Epoch 22/30
15/15 [====================================
Epoch 23/30
15/15 [==============] - 0s 6ms/step - loss: 0.0236 - accuracy: 0.9984
Epoch 24/30
15/15 [====================================
Epoch 25/30
15/15 [====================================
Epoch 26/30
15/15 [====================================
Epoch 27/30
15/15 [====================================
Epoch 28/30
15/15 [====================================
Epoch 29/30
15/15 [====================================
Epoch 30/30
15/15 [====================================
Accuracy of ANN: 98.80468845367432 %
Precision recall f1-score support
0 0.96 0.91 0.93 966
1 0.91 0.96 0.93 935
Accuracy 0.93 1901
Macro avg 0.93 0.93 1901
Weighted avg 0.93 0.93 0.93 1901 The performance of the ANN election can be further evaluated using precision recall.

The performance of the ANN algorithm can be further evaluated using precision, recall, and f1-score metrics for each class (0 and 1) in the classification task.

For Class 0:

The precision is 0.96, indicating that out of all the samples predicted as class 0, 96% were actually true positives. The recall is 0.91, meaning that the ANN algorithm correctly identified 91% of the samples belonging to class 0.The f1-score is 0.93, which represents a balanced measure of precision and recall.

For Class 1:

The precision is 0.91, indicating that out of all the samples predicted as class 1, 91% were actually true positives. The recall is 0.96, meaning that the ANN algorithm correctly identified 96% of the samples belonging to class 1. The f1-score is 0.93, again representing a balanced measure of precision and recall. The weighted average of precision, recall, and f1-score accounts for the imbalance in class distribution and is also calculated. In this case, the weighted average accuracy for the ANN algorithm is reported as 93%.

Evaluation Metrics:

A machine learning model's performance is evaluated using evaluation metrics. The exact work and the nature of the issue you're seeking to solve will determine the evaluation criteria you use. Here are some commonly used evaluation metrics along with their formulas:

Accuracy: Accuracy measures the proportion of correctly classified instances over the total number of instances.

$$(TP + TN) / (TP + TN + FP + FN)$$

Precision: Precision measures the proportion of true positive predictions over the total number of positive predictions.

$$TP / (TP + FP)$$

Recall: Recall measures the proportion of true positive predictions over the total number of actual positive instances.

$$TP/(TP+FN)$$

F1 Score: The F1 score is the harmonic mean of precision and recall. It provides a balanced measure between precision and recall.

Specificity (**True Negative Rate**): Specificity measures the proportion of true negative predictions over the total number of actual negative instances.[73-75]

TN / (TN + FP)

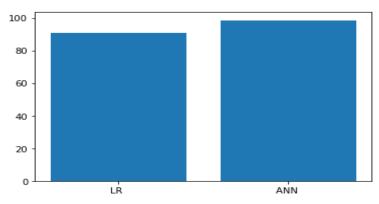


Figure 11: Classification Accuracy

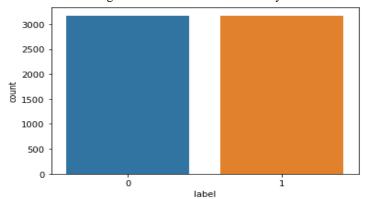


Figure 12: Data Labeled

Table 1: Comparison with Exiting Work

Classification Acc

	Classification	Accuracy
Existing Work	SVM	82.00
Proposed Work	ANN	98.80
	LR	99.08

Table 1 shows a comparison between the existing work and the proposed work in terms of classification accuracy using different algorithms. The existing work used Support Vector Machines (SVM) and achieved an accuracy of 82.00%. On the other hand, the proposed work utilized Artificial Neural Networks (ANN) and Logistic Regression (LR) algorithms. For the proposed work, the Artificial Neural Network (ANN) achieved an accuracy of 98.80%. This indicates that the ANN algorithm outperformed the SVM algorithm used in the existing work.

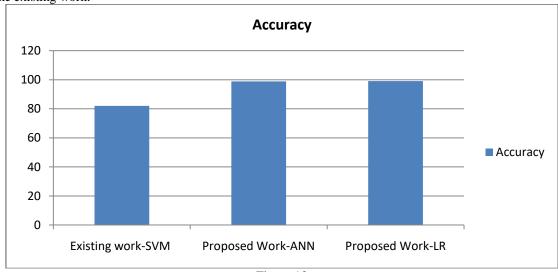


Figure 13

Conclusion:

In conclusion, the development of a reliable fake news detection system is a significant endeavor that can contribute to combating the spread of misinformation and promoting a more informed society. By leveraging machine learning algorithms, preprocessing techniques, and appropriate evaluation metrics, we can build models capable of accurately distinguishing between fake and genuine news articles. Through the objectives outlined above, we can achieve substantial progress in this area. By collecting a diverse and welllabeled dataset, preprocessing the data effectively, training robust classification models, and evaluating their performance, we can develop a fake news detection system that provides reliable results. Deploying the model in practical settings and validating its efficacy through real-time monitoring and user feedback helps ensure its practical utility. Machine learning methods (including decision trees and gradient optimization algorithms) to detect false information, thereby providing a preliminary model by focusing on the most popular data mining algorithms, by using different data mining techniques to achieve preliminary data models According to the review of the literature in this study, it clearly shows that most researchers use popular data extraction algorithms (such as tree cutting and gradient optimization algorithms) as classification techniques. Manually classifying news involves in-depth knowledge of the field and the ability to spot text oddities. In this study, we looked at the issue of classifying false news stories utilising ensemble methods and machine learning models. Instead of precisely classifying political news, the data we used in our work was gathered from the World Wide Web and contains news pieces from a variety of domains to cover the majority of the news. In order to improve the performance of the proposed clustering and classification algorithms, it may one day be able to use intelligent agents. In addition to combining experimental data extraction technologies, other aggregations and other clustering algorithms can be used to improve accuracy. Despite the significance of the findings in this thesis, including the contributions made by parallel efforts, combating false news is a classic adversarial problem that necessitates ongoing research. Every election, disinformation operations look for novel techniques to sway public opinion, while new defence strategies are developed to at least lessen the impact of such efforts.

Future Scope:

The field of fake news detection continues to evolve, and there are several avenues for future exploration and enhancement. Some potential areas of future research and development include:

Deep Learning Approaches:

Exploring the use of advanced deep learning techniques, such as recurrent neural networks (RNNs), convolutional neural networks (CNNs), or transformer models like BERT, to capture more complex patterns and semantic relationships in text data. Multimodal Approaches: Integrating additional modalities, such as image analysis or social network analysis, to complement text-based analysis and improve the accuracy of fake news detection.

Adversarial Defense Techniques:

Developing robust models that can withstand adversarial attacks by incorporating techniques like adversarial training, defensive distillation, or generating adversarial examples to enhance the model's resilience.

Explainability and Interpretability:

Enhancing the interpretability of fake news detection models to provide transparency and insights into the features and patterns driving the classification decisions. This can help users understand the rationale behind the predictions and build trust in the system.

Real-Time Monitoring and Updates:

Establishing mechanisms to continuously monitor and update the fake news detection system to adapt to evolving techniques employed by fake news creators. Regular updates and improvements can help maintain the effectiveness and relevance of the system over time.

Collaboration and Data Sharing:

Encouraging collaboration among researchers, organizations, and fact-checking agencies to share datasets, benchmarks, and best practices, promoting the development of more robust and generalized fake news detection models.

References:

- Kyeong-Hwan Kim; Chang-SungJ eong Fake News Detection System using Article Abstraction 2019
 16th International Joint Conference on Computer Science and Software Engineering (JCSSE) Year:
 2019
- 2. Syed Ishfaq Manzoor; Jimmy Singla; Nikita Fake News Detection Using Machine Learning approaches: A systematic Review 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI) Year: 2019 DOI: 10.1109/IEEE Tirunelveli, India
- 3. Yuta Yanagi; Ryohei Orihara; Yuichi Sei; Yasuyuki Tahara; Akihiko Ohsuga Fake News Detection with Generated Comments for News Articles 2020 IEEE 24th International Conference on Intelligent Engineering Systems (INES) Year: 2020 DOI: 10.1109/ IEEE Reykjavík, Iceland

- 4. Ankit Kesarwani; Sudakar Singh Chauhan; Anil Ramachandran Nair Fake News Detection on Social Media using K-Nearest Neighbor Classifier 2020 International Conference on Advances in Computing and Communication Engineering (ICACCE) Year: 2020
- GowriRamachandran; Daniel Nemeth; David Neville; Dimitrii Zhelezov; Ahmet Yalçin; Oliver Fohrmann; B haskar Krishnamachari Whistle Blower: Towards A Decentralized and Open Platform for Spotting Fake News 2020 IEEE International Conference on Blockchain (Blockchain) Year: 2020
- Adrien Benamira; Benjamin Devillers; Etienne Lesot; Ayush K. Ray; Manal Saadi; Fragkiskos D. Malliaros Semi-Supervised Learning and Graph Neural Networks for Fake News Detection 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM) Year: 2019
- 7. Chaitra K Hiramath; G. C Deshpande Fake News Detection Using Deep Learning Techniques 2019 1st International Conference on Advances in Information Technology (ICAIT) Year: 2019 DOI: 10.1109/IEEE Chikmagalur, India
- 8. Nihel Fatima Baarir Abdelhamid DjeffaL Fake News detection Using Machine Learning 2020 2nd International Workshop on Human-Centric Smart Environments for Health and Well-being (IHSH) 978-1-6654-4084-4/21/\$31.00 ©2021 IEEE
- 9. Anmol Uppal; Vipul Sachdeva; Seema Sharma Fake news detection using discourse segment structure analysis 2020 10th International Conference on Cloud Computing, Data Science & Engineering (Confluence) Year: 2020 DOI: 10.1109/ IEEE Noida, India
- 10. Lovedeep Singh Fake News Detection: a comparison between available Deep Learning techniques in vector space 2020 IEEE 4th Conference on Information & Communication Technology (CICT) Year: 2020 DOI: 10.1109/ IEEE Chennai, India
- 11. Tao Jiang; Jian Ping Li; Amin Ul Haq; Abdus Saboor Fake News Detection using Deep Recurrent Neural Networks 2020 17th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP) Year: 2020
- 12. Rohit Kumar Kaliyar; Pawan Kumar; Manish Kumar; Meenal Narkhede; Sreyas Namboodiri; Sneha Mishra Deep Net: An Efficient Neural Network for Fake News Detection using News-User Engagements 2020 5th International Conference on Computing, Communication and Security (ICCCS) Year: 2020
- 13. Inna Vogel; Meghana Meghana Detecting Fake News Spreaders on Twitter from a Multilingual Perspective 2020 IEEE 7th International Conference on Data Science and Advanced Analytics (DSAA) Year: 2020
- Jiawei Zhang; Bowen Dong; Philip S. Yu Deep Diffusive Neural Network based Fake News Detection from Heterogeneous Social Networks 2019 IEEE International Conference on Big Data (Big Data) Year: 2019
- 15. N. Smitha;R. Bharath Performance Comparison of Machine Learning Classifiers for Fake News Detection 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA) Year: 2020