ISSN: 2456 - 4664

International Journal of Advanced Trends in Engineering and Technology

Impact Factor 5.965, Special Issue, January - 2018

1st International Conference on Innovations in Mechanical Engineering (ICIME-2018)
On 5th & 6th January 2018 Organized By

Guru Nanak Institute of Technology & Guru Nanak Institutions Technical Campus, Hyderabad

ANALYSIS OF THERMAL EFFICIENCY ON PIN FIN WITH COPPER, ALUMINUM MATERIALS AND DIFFERENT CROSS SECTIONS

B. Sushma*, Ravi Sandeep Kumar Kona* & Dr. S. Sreenatha Reddy**

* Department of Mechanical Engineering, Guru Nanak Institute of Technology, Hyderabad, Telangana ** Professor, Guru Nanak Institute of Technology, Hyderabad, Telangana

Cite This Article: B. Sushma, Ravi Sandeep Kumar Kona & Dr. S. Sreenatha Reddy, "Analysis of Thermal Efficiency on Pin Fin With Copper, Aluminum Materials and Different Cross Sections", International Journal of Advanced Trends in Engineering and Technology, Special Issue, January, Page

Number 55-57, 2018

Abstract:

The technical design of a few machines and thermal procedures include a heat transfer component. The balances assume an essential part in the operation of warmth exchange by conduction, convection both characteristic and constrained. The thermal investigation of various blade/fin materials, specifically copper and aluminum is performed. These two unique materials are examined in three diverse roundabout, triangular and square geometric cross segments keeping in mind the end goal to decide the material and geometrical cross segment of the float with ideal thermal efficiency by looking at the trial and analytical outcomes. Thermal conductivity of the balance material is determined. Steady temperature is connected at the base of blade. The activity reports add up to territory for thermal convection, balance proficiency, and blade adequacy. Shapes of temperature are shown. A section from the material variations and geometrical cross segment variations, the analysis is conveyed for two methods of heat transfer by conduction and convection. For the investigation of the method of constrained convection pin-fin contraption is utilized. For the investigation of common convection, a test fix is solely outlined. The examination is done with the help of ANSYS. This examination enhances the comprehension of heat transfer in every one of these fins by concentrate the conduct of a thermally gradient fin.

Key Words: Thermal Efficiency, Heat Transfer, Pin Fin, Different Cross-Sections and Materials & ANSYS **Introduction:**

In this examination work, through different fin geometries for heat transfer is displayed. Geometric arrangements, like rectangular, triangular and tube shaped profiles are accessible. The length, base thickness, and end thickness of the fin are determined. Coarse, medium, and fine work writes are accessible. Heat transfer rate of the fin material is indicated. Consistent temperature and uniform heat transition limit conditions can be connected are the base of fin. Completely protected or convective limit conditions are connected at the tip of fin. The activity reports base divider temperature, add up to zone for heat convection, warm dissemination rate, balance productivity, and fin adequacy. Modes of temperature are shown [1]. This work makes thermal analysis of fins with reference to the nuts and bolts of warmth exchange in regards to the different methods of warmth exchange, consolidated methods of heat transfer [2].

Materials:

Fin material thermal conductivity can be indicated. In this activity, aluminum is the default material for thermal conductivity. The thermal conductivity for other fin materials, for example, Copper, Steel, or Brass, is accessible. The thermal conductivity may likewise be indicated for any strong of intrigue.

Experimentation:

Convection is the exchange of warmth inside a liquid by blending of one part of liquid with the other. Convection is conceivable just in a liquid medium and is straightforwardly connected with the vehicle of medium itself. In constrained convection, smooth movement is basically created by some superimposed speed field like a fan, blower or a pump; the vitality transport is said because of constrained convection [3-4]. The mechanical assembly comprises of a blower assembly fitted with the test pipe.

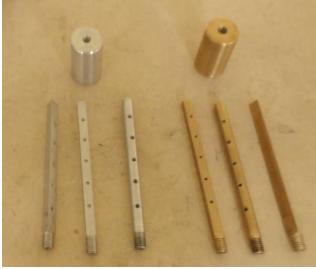


Figure 1: Test Specimens

International Journal of Advanced Trends in Engineering and Technology

Impact Factor 5.965, Special Issue, January - 2018

1st International Conference on Innovations in Mechanical Engineering (ICIME-2018)
On 5th & 6th January 2018 Organized By

Guru Nanak Institute of Technology & Guru Nanak Institutions Technical Campus, Hyderabad

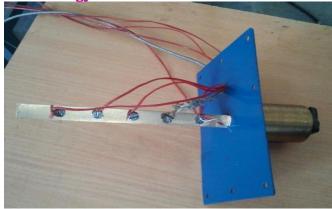


Figure 2: Specimen Setup

Sample Calculations:

For forced convention:

Nusselts number $Nu = 0.615(Re)^{0.466}$, 40

 $Nu = 0.615(361.07)^{0.4666} = 9.56$

$$\mathbf{h} = \mathbf{Nu} * \frac{\mathbf{Katr}}{\mathbf{D}} = 22.556$$

Where,

h= heat transfer coefficient

K= air thermal conductivity Tmf= 0.02996 w/mK

D= dia. of fin =12.5 X
$$10^{-3}$$
 m

$$m = \sqrt{\frac{hc}{KA}} = 5.9$$

Where,

c= perimeter of circle= 0.039m

A= area of circle= $1.22 \times 10^{-4} \text{ m}^2$

K = fin material thermal conductivity = 204.6

Efficiency of fin=
$$\frac{\text{Tanh}(\text{ml})}{\text{ml}}$$
 = 79.95%

Where,

l= length of the fin= 150mm

effectiveness =
$$\frac{Tanh(ml)}{\sqrt{\frac{ha}{Kc}}}$$

Modeling and Analysis:

In displaying make the geometry, set the material and meshing of specimen. For meshing fine, medium, and coarse work writes are accessible. Work thickness fluctuates in light of the allocated Refinement Factor following mesh density as Coarse= 2, Medium= 1.5 and Fine= 1.For the trapezoidal and round and hollow balances the most limited edge is recognized and the edge component measure is computed by the most limited edge is recognized and the edge component measure is computed by isolating the briefest edge into 8, 6 or 4 components for fine, medium and coarse work composes, individually.

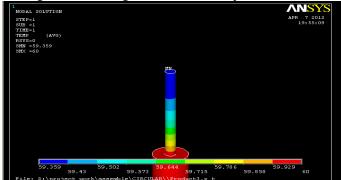


Figure 3: Copper fin (circular C/S)

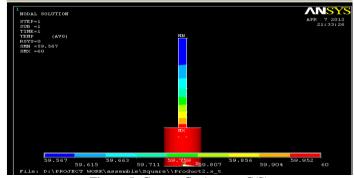


Figure 5: Copper fin (square C/S)

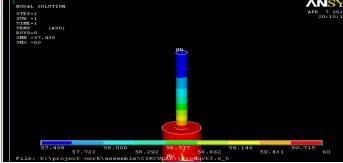


Figure 4: Al fin (circular C/S)

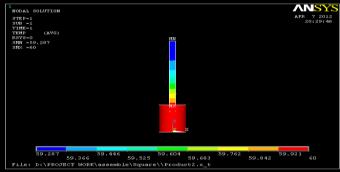
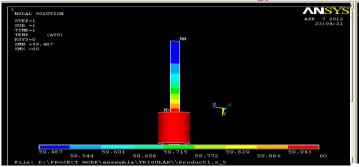


Figure 6: Al fin (square C/S)


ISSN: 2456 - 4664

International Journal of Advanced Trends in Engineering and Technology

Impact Factor 5.965, Special Issue, January - 2018

1st International Conference on Innovations in Mechanical Engineering (ICIME-2018)
On 5th & 6th January 2018 Organized By

Guru Nanak Institute of Technology & Guru Nanak Institutions Technical Campus, Hyderabad

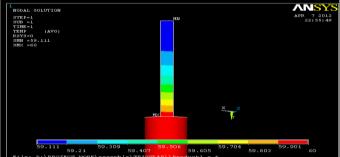


Figure 7: Copper fin (triangular C/S)

Figure 8: Al fin (triangular C/S) Results and Observations

For the investigation of the forced convention pin-fin contraption is utilized. For the examination of characteristic convection, a test fix is solely composed. The investigation is finished with the assistance of ANSYS. To investigate the copper, metal and aluminum for their heat transfer capacities it has been utilized as a part of terms of convection for the predetermined square, circular& square cross areas tests. Heat dispersion through copper and aluminium fins in ANSYs broke down and following results are resolved

	Cross Section	Material	Heat Transfer Coefficient	Efficiency	Effectiveness
	Circular	Cu	22.39	88.01	42.18
		Al	22.55	79.91	38.22
	Square	Cu	25.49	87.09	13.99
		Al	25.47	73.08	45.18
	Triangular	Cu	21.97	80.04	72.32
		Al	20.86	70.35	63.47

Table 1: Experimental values of specimen

Material	Cross -section	Efficiency		Effectiveness				
Material	Closs -section	Experimental	Analytical	Experimental	Analytical			
Al	Circular	79.91	78.11	38.22	40.02			
	Triangular	70.35	71.00	63.47	59.05			
	Square	73.08	72.02	45.18	47.02			
	Circular	88.01	88.02	42.18	41.04			
Cu	Triangular	80.04	81.06	72.32	69.08			
	Square	87.09	88.01	13.99	21.06			

Table 2: Experimental Vs Analytical Results

Conclusion:

The mechanical outlines including thermal procedures tend to give ideal yield of heat transfer usefulness when the copper circular cross section blades are utilized where the danger of over the top warmth or cooling is low. Contrasting the test comes about and systematic outcomes, it is inferred that productivity of the circular cross section copper fin is ideal among every one of these cases and henceforth copper is the best decision for the balance material.

References:

- 1. C. V. M Braga, and F. E. M Saboya, "Analysis of Thermal Performance of Pinned and Finned Walls Subjected to Convection". (in Portuguese), 2nd Brazilian Meeting on Thermal Sciences, Aguas de Lindoia, São Paulo, Brazil, Vol.01, pp. 229-233.(1988)
- 2. L. A. O Rocha, F. E. M. Saboya, and J. V. C Vargas."A Comparative Study of Elliptical and Circular Sections in One-and Two-Row Tubes and Plate Fin Heat Exchangers"International Journal on Heat and Fluid Flow, Vol. 18(2), pp. 247-252. (1997)
- 3. C. V. M Braga and F. E. M Saboya "Turbulent Heat Transfer and Pressure Drop in Smooth and Finned Annular Ducts" 8th International Heat Transfer Conference, San Francisco, California, Vol. 6, pp. 2831-2836. (1986)
- 4. T. C. Carnavos "Coding Air in Tubular Flow with Internally Finned Tubes" by Heat Transfer Engineering, Vol. 1(2), pp. 41-46.(1979)
- 5. F.W. Dittus. and L. M. K Boelter. "Heat Transfer in Automobile Radiators of the Tubular Type" International Communication on Heat Transfer, Vol.12, pp. 3-22. (1985)
- 6. Sathish Kumar, K, Dhanasekaran, R, Venkatachalam, G and Kumaravel, A, "Microstructure, Hardness and Tensile Properties of Al7%Si0.35%Mg Aluminum Alloy", International Journal of Advanced Technology in Engineering and Science, Vol. 03, No. 01, pp. 1235-1239, 2015
- 7. R. J. Moffat "Describing the Uncertainties in Experimental Results", Experimental Thermal and Fluid Science, Vol. 1, pp. 3-17. (1988)